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Abstract—In this paper, we propose a potential based integral
equation solver for low-frequency electromagnetic problems. In
this formulation, the scalar potential (Φ) equation is solved in
tandem with the vector potential (A) equation. The resulting
system is immune to low-frequency catastrophe and accurate in
capturing the electrostatic and magnetostatic physics. The fast
convergence of the new A-Φ system, which is a typical symmetric
saddle point problem, is made possible through the design of an
appropriate left constraint preconditioner. Numerical examples
validate the efficiency and stability of the novel formulation in
solving both electromagnetic scattering and circuit problems over
a wide frequency range up to very low frequencies.

Index Terms—Vector Potential, Scalar Potential, Integral
Equation, Low-frequency Catastrophe, Scattering Problems, Cir-
cuit Problems

I. INTRODUCTION

MAXWELL’S equations formulated with E, H, D and

B, are widely accepted for the electromagnetic physics

from atomic length scale to galaxy length scale. Inspired by the

increasing development in quantum optics, a wideband electro-

magnetic solution is desired from quantum physics regime to

classical physics regime. However, computational electromag-

netic methods deriving from the Maxwell’s equations, such

as the electric field integral equation (EFIE) methods, are

usually susceptible to low-frequency catastrophe [1] and ill-

conditioning with dense discretization [2]. This is exactly the

difficulty in solving problems with small-size objects.

Various remedies to the low-frequency catastrophe of in-

tegral equations in electromagnetic problem have been well

addressed in literature. The loop-tree/loop-star method has

been popularized by doing a quasi-Helmholtz decomposition

to separate the vector and scalar potential parts [3]–[5]. The

Calderón preconditioned EFIE (CP-EFIE) preconditions itself

to obtain a well conditioned second-kind operator with a

bounded spectrum [6]–[10]. Stabilized CP-EFIE formulations

with loop-star decomposition are proposed at low frequencies

[11]–[13]. And as an extension, the low frequency null-spaces
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in multi-connected structures using CP-EFIE are well studied

in [14], [15]. Another EFIE low-frequency breakdown remedy

[16] transforms EFIE into a generalized eigen value problem,

an accurate eigen modal superposition of the current can be

achieved after manually setting the small eigenvalues to be

zero.

In the literature, the idea of potential separation by consider-

ing the current and charge as unknowns has been investigated

for a stable formulation at low frequencies. The current and

charge integral equation (CCIE), which includes the charge as

extra unknowns in the combined field integral equation, is a

well-conditioned second-kind integral equation for scattering

problems with smooth closed objects [17]. Also, the partial

element equivalent circuit (PEEC) is applied to EFIE to obtain

a separated potential integral equation (SPIE) [18]. Similar to

CCIE, the PEEC method uses the current and charge basis

functions to separate the vector and scalar potentials. With

the incorporation of conductor resistive loss and material

dielectric loss, the system matrix is well behaved throughout

a wide frequency range. Alternatively, the augmented EFIE

(A-EFIE) is also a way to avoid the imbalance inherent in

EFIE by separating the vector and scalar potential terms [19].

A-EFIE achieves low-frequency stability without searching

for loop-tree/loop-star basis and can be easily integrated into

the existing MoM solvers. Also, it inherits the capability of

standard EFIE without the limitation of basis type [20]–[22].

Note that in quantum physics, the formulations are better

described using the vector potential A and scalar potential

Φ, especially when the fields are zero and the potentials

are nonzero [23]. Thus, to better bridge the electromagnetic

regime and quantum regime, one can define the EM equations

in the form of potentials. Most of the related works done

in literature are dealing with differential equations [24]–[28],

which are usually immune to low-frequency catastrophe from

which the Maxwell’s equations suffers. In [29], an integral

equations system is constructed with the potentials as the

unknowns to solve dielectric scattering problems at middle

frequencies. Recently, the decoupled potential integral equa-

tion was presented for scattering problems by solving the

boundary value problems [30]. The potential-based integral

equations have shown promise for a stabilized system for a

wide frequency regime. Also in [31], [32], a vector potential

integral equation is derived and implemented through the

generalized Green’s theorem and equivalence principle, where

the current and normal component n̂ · A (contribution of

charge) are considered as unknowns. To match the additional

number of unknowns, two equations are formulated from

tangential and normal direction, respectively.
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In this paper, the scalar potential formulation is proposed

and solved in tandem with the vector potential formulation

at low frequencies to capture the correct physics, since the

vector potential equation describes the magnetostatic world

while the scalar potential equation controls the electrostatic

world. The new formulations are firstly presented in [33].

Here, we will show the detailed understanding, derivation as

well as the systematic spectrum analysis. The equation from

the scalar potential Φ is derived with the Lorenz’s Gauge.

Combining with the vector potential formulation, the resultant

system becomes symmetric. With the left constraint precon-

ditioning based on symmetric saddle point problem, the new

system achieves excellent convergence for iterative solvers.

It is verified in this paper that the new A-Φ formulation

is immune to low frequency catastrophe and achieves stable

conditioning properties when the mesh discretization becomes

denser. Numerical results shows that the new system works

at a wide range of frequency for both scattering and circuit

problems. The fact that the only integral kernel in the A-Φ
formulation is the scalar Green’s function ensures the easy

integration of the fast multipole algorithms based on existing

techniques. Then the proposed method naturally can be easily

adapted to large-scale computations.

The paper is organized as follows. Section II introduces

some preliminaries of the work and the formulation for scalar

potential is derived, which is solved in tandem with the vector

potential formulation. In Section III, we discuss the recovery

of conventional integral equations from A-Φ formulation. In

Section IV, the equations are discretized and implemented

using the method of moments. The discussion for the con-

ditioning with dense mesh is presented in Section IV-D. Also

in Section V the incident potentials for different cases are

introduced. The large-scale computation issue is presented

in Section VI. Numerical results are shown in Section VII

for scattering problems, electrostatic problem, magnetostatic

problem and large-scale computation. Then the paper ends

with Section VIII for conclusion.

II. FORMULATIONS

From the Maxwell’s equation, the vector potential A and

scalar potential Φ are defined as:

B = ∇× A (1)

E = iωA −∇Φ. (2)

Based on the constitutive relationship D = ǫE,B = µH and

the Lorenz gauge ∇ · A = iωµǫΦ, the vector and scalar

potential equations are decoupled from each other [34].

∇2A + k2A = −µJ (3)

∇2Φ+ k2Φ = −ρ/ǫ. (4)

Here k is the wave number and ǫ and µ is the permittivity

and permeability, respectively, and J and ρ are the current and

charge sources in the solvable region.

For a problem with two regions, as shown in Fig. 1, the

sources in region 1 are the current density J and the produced

charge density ρ. We consider region 2 to be a PEC scatter and

region 1 to be the free space; then based on (3), the equivalent

μ1, ε1, V1

A1, Φ1

Sinf
S

μ2, ε2, V2

A2, Φ2

region 2

region 1

J,  ρ

Fig. 1. Configuration of media and regions used to derive the scalar potential
equation.

principle and extinction theorem for vector potential integral

equation with scalar Green’s function can be derived as [31]

r ∈ V1, A1(r)

r ∈ V2, 0

}

= Ainc(r)+

∫

S

dS′ {µ1g1(r, r′)J1(r
′) + n̂′ · A1(r

′)∇′g1(r, r′)} . (5)

where Ainc is the incident vector potential. Here, µ1 is the

permeability and A1(r) is the vector potential for field point r

in region 1. Moreover, J1 is the equivalent current on the PEC

surface, and g1(r, r′) is the free space scalar Green’s function

which is defined as

g1(r, r′) =
eik1|r−r′|

4π | r − r′ |
(6)

where r′ is the source point location. Here we denote the

unknown n̂ · A with Σ. By applying the extinction theorem

on the surface S, the equation can be written as

0 = Ainc(r)+
∫

S

dS′ {µ1g1(r, r′)J1(r
′) +∇′g1(r, r′)Σ1(r

′)} , r ∈ S+

(7)

The scalar potential formulation can be simply derived

from the vector formulation (5) and the Lorenz gauge. The

governing potentials for regions 1 and 2 satisfy the scalar wave

equation (4), while in region 2, ρ2 = 0. The Green’s function

in region 1 can be defined as

(∇2 + k21)g1(r, r′) = −δ(r − r′). (8)

where (6) is a possible choice of solution satisfying the

radiation condition.

Taking the divergence of (7) and incorporating the Lorenz

gauge, it becomes

0 = iωµ1ǫ1Φinc(r) +
∫

S

dS′
{

µ1g1(r, r′)∇′ · J1(r
′) +∇′2g1(r, r′)Σ1((r

′))
}

, r ∈ S+

(9)
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Using (8), and that r 6= r′, the scalar potential formulation for

PEC surface can be obtained as

− iωµ1ǫ1Φinc(r) =
∫

S

dS′
{

µ1g1(r, r′)∇′ · J1(r
′) + k21g1(r, r′)Σ1(r

′)
}

, r ∈ S+

(10)

It is important to notice that the physical meaning of (10),

as shown below, is the weak form of the current continuity

condition by using the scalar Green’s theorem which follows

from the scalar wave equation (4).

By multiplying (4) by g1 and (8) by Φ1, subtracting the

resultant equations and then integrating over the volume V1,

the volume integral equation for scalar potential is obtained

[35]. With the help of Gauss’ theorem, the volume integral

can be written in the form of surface integral as follows

Φ1(r
′) = Φinc(r

′)−
∫

S+Sinf

dSn̂·[g1(r, r′)∇Φ1(r)− Φ1(r)∇g1(r, r′)] , r′ ∈ V1,

(11)

where Φinc is the incident field generated by the charge source

ρ in V1

Φinc(r
′) =

1

ǫ

∫

V1

dV g1(r, r′)ρ1(r) (12)

Due to the radiation boundary condition, the integral over Sinf

vanishes in (11). After swapping r and r′, the equation for the

whole space can be written as

r ∈ V1, Φ1(r)

r ∈ V2, 0

}

= Φinc(r)−

∫

S

dS′n̂′ · [g1(r, r′)∇′Φ1(r
′)− Φ1(r

′)∇′g1(r, r′)] . (13)

In V2, ∇Φ1(r) and Φ1(r) actually act as the equivalent

impressed surface sources. They generate a field in V2 that

exactly cancels with the incident field, which is the extinction

theorem. The scalar Green’s theorem (13), where the Green’s

function g(r, r′) and n̂ · ∇g(r, r′) are the integral kernels,

includes the unknowns for Φ and n̂ · ∇Φ. According to (2),

the surface charge density can be written as

σ = n̂ · ǫE = iωǫ(n̂ · A)− n̂ · ǫ∇Φ, (14)

from which it shows that n̂ · ∇Φ is part of the contribution

to the surface charge and the formerly defined Σ = n̂ · A is

actually the other part of contribution.

As a PEC boundary condition, Φ = 0 on the surface. Thus

the surface equation of the scalar Green’s theorem (13) can be

reduced to

Φinc(r) =

∫

S

dS′n̂′ · [g1(r, r′)∇′Φ1(r
′)] r ∈ S+. (15)

Substituting (15) into (10) and considering the fact of (14),

we can obtain
∫

S

dS′g1(r, r′) {∇′ · J(r′)− iωσ(r′)} = 0 (16)

This is a weak form of the current continuity condition with

the Green’s function as the weighting kernel. It implies that

the current continuity condition is implicitly imposed in the

vector and scalar potential formulations through Lorenz gauge.

Similar conclusion with that in (16) can also been found in

[36], [37], where the Green’s function is manually applied as

the integral kernel on the current continuity condition in the

field-based formulations in order to improve the conditioning

of the system.

III. RECOVERY OF EFIE AND MFIE FORMULATIONS

Based on (1) and (2), the conventional field-based integral

equations can be derived from the potential-based integral

equations. Similarly, taking the gradient of (15) together with

(7), the electric field integral equation can be obtained as

−Einc(r) = −iωAinc(r) +∇Φinc(r)

= iω

∫

S

dS′[µ1g1(r, r′)J1(r
′) +∇′g1(r, r′)Σ1(r

′)]

−∇

∫

S

dS′g1(r, r′)n̂′ · ∇′Φ1(r
′) (17)

Note that the first term in (17) is the vector potential term in

the original EFIE with scalar Green’s function. The second

term and the third term can be deduced to be

iω

∫

S

dS′∇′g1(r, r′)Σ1(r
′)−∇

∫

S

dS′g1(r, r′)n̂′ · ∇′Φ1(r
′)

= −

∫

S

dS′∇g1(r, r′)
σ1(r

′)

ǫ
, (18)

which is the scalar potential term in EFIE with σ1 denoting

the surface charge. It is interesting to notice that the vector

potential formulation in fact contributes the EFIE vector

potential term and one part of the scalar potential term, while

the scalar potential formulation contributes to the other part of

the EFIE scalar potential term. As ω approaching to zero, the

only component in the electric field is from the scalar potential

which is the contribution from part of the surface charge.

On the other hand, the magnetic field integral equation

(MFIE) can be directly obtained from (7) by taking the curl of

both sides of the equation. Considering the constitutive relation

B = µH and the fact that ∇×∇g(r, r′) = 0, it can be derived

as

−Hinc(r) = ∇×

∫

S

dS′g1(r, r′)J1(r
′) (19)

which is just the well known MFIE for scalar Green’s function.

IV. DISCRETIZATION AND IMPLEMENTATION

A. Formulation Discretization

Now we have arrived at the A-Φ formulation for a PEC

object as (7) and (10). The excitations are the incident vector

potential and scalar potential, and the unknowns are the

current J1 and the normal vector potential component Σ1. By

discretizing J1 with RWG basis function fn and Σ1 with pulse

basis function hn, then testing (7) with RWG function and



IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. XX, NO. XX, XX 2016 4

(10) with pulse function, the matrix representation of the A-Φ
system can be written as

[

µ1Γ11 Γ12

Γ21 ω2ǫ1Γ22

] [

j1
ψ1

]

=

[

−αinc

−iωǫ1φinc

]

, (20)

where j1 and ψ1 denote the basis coefficients for J1 and Σ1,

respectively. The matrix elements are
[

Γ11

]

mn
= 〈fm, g1, fn〉 ,

[

Γ12

]

mn
= 〈∇ · fm, g1, hn〉,

[

Γ21

]

mn
= 〈hm, g1,∇ · fn〉,

[

Γ22

]

mn
= 〈hm, g1, hn〉, (21)

and the right-hand side vector elements are

[αinc]m = 〈fm,Ainc〉 , [φinc]m = 〈hm,Φinc〉 (22)

Here the second equation is divided by µ1 in the matrix for-

mulation, so that the matrix system presented in (20) becomes

symmetric since
[

Γ12

]

mn
=

[

Γ21

]

nm
. The notation αinc and

φinc is the right-hand side excitation vector of Ainc and Φinc

tested with RWG function and pulse function, respectively.

Furthermore, the inner product in the angle brackets are

defined as

〈f(r), h(r)〉 =

∫

S

dSf(r) · h(r) (23)

〈f(r), g1(r, r′), h(r′)〉 =

∫

S

dSf(r) ·

∫

S

dS′g1(r, r′)h(r′)

(24)

where f(r) and h(r) can be replaced by scalar functions.

Obviously, no frequency normalization is needed as what

one does for loop-tree/loop-star method, since no frequency

term outside the integral is involved except for the right-bottom

block in the new A-Φ formulation after separating the vector

potential and scalar potentials.

B. Coefficient Normalization

Observing the matrix in (20), the matrix elements

Γij (i, j = 1, 2) are of the same order. The existence of

the coefficients µ1, ǫ1 and ω2 causes imbalanced diagonal

element values of the block matrix system (very small values

in the left-top block and very large values in the right-bottom

block), leading to the inefficient convergence when an iterative

solver is involved. Considering region 1 to be free space, an

appropriate coefficient normalization is applied in the system

as presented as follows
[

Γ11 Γ12

Γ21 k20Γ22

] [

j1/c0
ψ1/η0

]

=

[

−αinc/η0
−ik0ǫ1φinc

]

, (25)

where c0, η0 and k0 are the light velocity, intrinsic impedance

and wave number in vacuum, respectively. Here an example

of the scattering of a unit PEC sphere at 10 MHz is used

to present the coefficient normalization effect. The sphere is

discretized into 867 edges and 578 patches. Fig. 2 shows

the eigenvalue spectrums before and after coefficient nor-

malization. Here only the positive values are shown with

logarithmic coordinates. Before the coefficient normalization,

the eigenvalues are largely divergently distributed with some

very small values accumulating around zero. Thus, the system

is ill-conditioned. With the appropriate normalization, the
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Fig. 2. Eigenvalue spectrum distribution of the A-Φ system (a) before
coefficient normalization; (b) after coefficient normalization.

spectrum is distributed within a small circle which is away

from zero. Later we will show that the normalized system can

achieve stable convergence with conventional iterative solver

such as the restarted GMRES, especially for denser meshes.

The matrix system presented in (25) is still symmetric. Since

the frequency factor locates only in the right-bottom block of

the matrix, there will be no frequency imbalance issue which

causes the low-frequency breakdown problem in EFIE. Also

it is noted that (25) is actually a typical symmetric saddle

point problem where the left-top block is symmetric and the

right-bottom block is approaching to zero at low frequencies.

It is favorable for one to solve such a system for there exists

typical preconditioners in mathematics. The symmetry of the

whole system enables the simplicity of the preconditioner and

ensures the efficient convergence after preconditioning.

C. Left Constraint Preconditioning

As it has been well addressed in [38], the left constraint

preconditioner P
−1

c is applied here. Denote the block matrix

in (25) as Γ, thus the preconditioned system matrix now can

be written as P
−1

c · Γ, where

Pc =

[

G Γ
T

21

Γ21 k20Γ22

]

. (26)

Here, G is an approximation of Γ11. For simplicity, G is

chosen as the diagonal of Γ11 and Γ
T

21 = Γ12. The inverse
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Fig. 3. Eigenvalue spectrum distribution of the preconditioned A-Φ system.

of Pc can be easily obtained through

P
−1

c =
[

I −G
−1

Γ
T

21

O I

]

·

[

G
−1

O

O S
−1

]

·

[

I O

−Γ21G
−1

I

]

,

(27)

where S = −(−k20Γ22+Γ21G
−1

Γ
T

21) is the Schur complement

of Γ. The procedure is not expensive at all even when S

is completely dense. Techniques such as approximate and

sparse factorization methods [38] can be used to efficiently

and approximately form and invert S. Later it will be shown

in Section VI that a simple diagonal manner of the matrices

forming the Schur complement can be chosen for large-scale

computations. The preconditioner is specially efficient while

the frequency is approaching zero and the right-bottom block

in (26) becomes zero.

The impedance matrices with and without the left constraint

preconditioner are built based on the same PEC sphere exam-

ple as illustrated in Section IV-B. The eigenvalue spectrum of

the matrices is shown in Fig. 3. After preconditioning, the sys-

tem becomes quasi-positive definite. And the eigenvalues are

almost real since their imaginary parts are much smaller than

the real parts, which is more obvious as frequency becomes

lower. For a typical symmetric saddle point problem, the ma-

trix elements are assumed to be real and the solved eigenvalues

are real accordingly. We can quasi equivalently apply the

spectrum theory of saddle point problem on the preconditioned

A-Φ formulation at low frequencies. Theoretically, when with

zero right-bottom block, after constraint preconditioning, the

eigenvalue 1 is with multiplicity of 2m, where m is the row

dimension of the matrix Γ21 [39]. And obviously, the better G

approximates Γ11, the more the eigenvalues clustering around

1. Here, the matrix G is chosen to be the diagonal of Γ11.

A number of eigenvalues are shown to accumulate around 1

in the zoom-in figures in Fig. 3. As k goes to zero, the right-

bottom block of the original matrix goes to zero. In the sphere

example,

Γ21 ∈ C
578×867 ⇒ 2m = 1156. (28)

At the frequency of 10 MHz, there are 1152 eigenvalues

clustered around 1 within an error of 1%, while at 10 kHz

the number is 1155 within a very small error of 10−6. It

implies that the diagonal approximation of G is appropriate

for an efficient preconditioning, especially at low frequencies.

Furthermore, the last m eigenvectors corresponding to eigen-

values 1 is of the form [0, y]T which is a pure eigen basis for

the charge contribution.

D. Conditioning with Dense Mesh Discretization

Further spectrum analysis on the preconditioned A-Φ for-

mulation system can be applied to discuss the conditioning

of the system if the mesh density becomes higher where the

EFIE formulation also breaks down.

Theoretically, referring to the theory in [38], [42], for a

preconditioned symmetric saddle point matrix P
−1

c ·Γ where

Pc is given by (26) (here G is symmetric and positive definite

by being chosen as the diagonal of Γ11), the eigenvalues are

of the form

λ = γ + 1, (29)

where γ is defined by the generalized eigenvalue problem

γ

[

I B
T

B k20Γ22

]

[

ũ

v

]

=

[

E 0
0 0

] [

ũ

v

]

, (30)

where B = Γ21G
− 1

2 , E = G
− 1

2
Γ11G

− 1

2 − I and ũ = G
1

2 u.

Apparently, the generalized eigenvalue problem above has at

least Np zero eigenvalues. It is validated that the generalized

eigenvalue problem in (30) has a zero eigenvalue solution with

the multiplicity of m + q, where q is the dimension of the

nullspace of E. This conclusion is easy to arrive at due to the

fact that γ = 0 if and only if Eũ = 0 and ũ 6= 0.

When γ 6= 0, here we assume that the matrix Γ22 is

invertible, the non-zero eigenvalues can be obtained from the

upper equation in (30) as

γ =
ũ∗Eũ

ũ∗ũ + ũ∗B
T

v
. (31)

What can be obtained from the lower equation in (30) is that

γBũ = −γk20Γ22v. (32)

Hence, since [u v]T is normalized eigenvector, the elements

of the term ũ∗B
T

in (31) should be of very small values at

low frequencies due to the existence of k20 factor in (32). Thus

it can be deduced that

|γ| ≈

∣

∣

∣

∣

ũ∗Eũ

ũ∗ũ

∣

∣

∣

∣

≤
‖ũ∗‖‖E‖‖ũ‖

|ũ∗ũ|
. (33)

Clearly, the non-zero eigenvalues are approximately bounded

by the spectrum of the matrix E at low frequencies. Thus,

the conditioning of the preconditioned A-Φ system is approx-

imately bounded by the conditioning of E + I. In fact, from

numerical observations of (31), at middle frequencies, the term

ũ∗B
T

v is still far smaller than 1. Thus the above conclusion

can be valid even at middle frequencies.
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Fig. 4. Absolute eigenvalues of the A-Φ system and the matrix system E+ I

for different mesh densities. Frequency: 300 kHz

Now let h be the average discretization diameter. Under a

certain discretization h, the zero-th order RWG basis function

satisfies

fm =
±lm(r0 − r)

2A±
m

= O(1), (34)

where lm is the RWG edge length, r0 and Am is the vertex

and area of the triangle, and r is the field point. Thus, the

h-dependance of the interactions between different elements

in Γ11 is O(h4). This is obtained by using (34) and the

double surface integral over the triangle in the matrix element

evaluation in (21). Then we have the h dependance for G
−1

as O(h−4). Therefore,

E + I = G
− 1

2
Γ11G

− 1

2 = O(1), (35)

which verifies that the elements in E+ I is bounded when the

mesh discretization becomes denser. Actually, the spectrum of

G
− 1

2
Γ11G

− 1

2 resembles that of G
−1

Γ11. The multiplication

of G
−1

is a normalization procedure of the matrix elements

in Γ11 with respect to the mesh density.

As claimed before, the matrix G is an approximation of Γ11.

The spectrum of G
−1

Γ11 is a continuous function between

two cases. For the best case, it is clusters at 1 when G = Γ11.

And for the simplest case when G = diag(Γ11), G
−1

acts as

the diagonal preconditioner. Also, note that the only integral

kernel in Γ11 is the Green’s function, which is a smooth term

and has substantial contribution from the self-interactions.

Thus, Γ11 is diagonal significant. In this way, even with G

being a diagonal matrix, the spectrum of the preconditioned

compact operator becomes much better. As presented in Fig.

4, the spectra of the preconditioned A-Φ system is bounded

by that of the matrix system E+ I within a finite range which

is away from zero. And the A-Φ system spectrum is shown to

be more compact comparing to that of E + I.

Similar conclusion can be drawn from the analysis using

the Gershgorin’s disk theorem, whose applications in time

domain integral equation systems can also be found in [40].

The Gershgorin’s disk theorem [41] says that, for a complex

matrix V ∈ CN×N with elements vij , the eigenvalues of V

locate in the disks union defined as
{

centers: vii, i = 1, . . . , N
radii:

∑

j∈N\i | vij |, i = 1, . . . , N
(36)

By using (27), the preconditioned A-Φ system actually can

be written into the form

V =

[

V11 V12

V21 V22

]

= P
−1

c · Γ

=

[

G
−1

[

Γ11 − Γ
T

21S
−1

Γ21(I − G
−1

Γ11)
]

0

S
−1

Γ21(I − G
−1

Γ11) I

]

. (37)

Now the final system matrix is in the form of a lower triangular

matrix and the right-bottom block matrix is an identity matrix.

Thus, according to the Gershgorin’s disk theorem, the eigen-

values of the matrix V can be categorized into two groups. One

group belongs to the disk union made up of the first Ne rows

of V, where Ne denotes the number of edges. Since the right-

top block matrix V12 = 0, the eigenvalues in this group are

actually determined by the eigenvalues of V11. Since G is the

approximation of Γ11, then the spectrum of V11 resembles that

of G
−1

Γ11. The other group of eigenvalues locate in the disk

union associated with the remaining Np rows of V, where Np

denotes the number of triangular patches. Since V22 = I, the

associated disks center at 1 and the radii are determined by

V21 which vanishes as G approaching Γ11. This agrees with

the former analysis with the generalized eigenvalue problem.

It can be concluded thereafter that the preconditioned A-

Φ system has an asymptotically bounded spectrum, which

indicates the conditioning with the dense mesh discretization

has been much improved after the constraint preconditioning.

E. Charge Neutrality Issue

It is demonstrated in this subsection that an additional

benefit of the proposed constraint preconditioned A-Φ system

is its immunity to the charge neutrality issue as illustrated

in [19]. In A-EFIE, the electric current and the charge are

regarded as separated unknowns while the current continuity

condition

∇ · J = iωσ (38)

is confined for the second equation. Typically, the charge

neutrality condition is automatically satisfied due to (38) and

the zero divergence of the total current by invoking Gauss’

integral theorem. But at very low frequencies, it can be

violated since ω ≈ 0. Although we use (10) in the A-Φ
formulation, our system matrix resembles that of A-EFIE and

still has such an electrostatic nullspace.

Here an example is used to present the singular value

distribution of the A-Φ system with and without left constraint

preconditioner. We use the same PEC sphere example as that in

IV-C. The singular value spectrums are plotted at the frequency

of 300 MHz and 100 kHz as shown in Figure 5. For middle

frequency like 300 MHz, no extremely small singular values

are found. When the frequency lowers, there exists one very



IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. XX, NO. XX, XX 2016 7

Fig. 5. The singular value distributions for A-Φ formulation and A-EFIE at
the frequencies of 300 MHz and 100 kHz.
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Fig. 6. The Hertzian dipole with current I oriented along z-axis.

small singular value compared to others. It is observed that

after preconditioning, not only the spectrum is smoothed but

also the smallest singular value corresponding to the nullspace

disappears.

V. INCIDENT POTENTIALS

A. Hertzian Dipole and Plane Wave Incident

For near-field excitation, as shown in Fig. 6, a Hertzian

dipole with current J(r) = Ilℓ̂δ(r) is oriented along z-axis

and placed as a point source near an object with coordinate

(r, θ,φ). Then the incident vector potential is

Ainc = µIlℓ̂
eikr

4πr
. (39)

The incident scalar potential can be obtained from Lorenz

gauge

iωǫΦinc = ∇ · Ainc/µ

= Il
(−eikr + ikreikr) cos θ

4πr2
. (40)

Thus, the vector potential is only related to the distance from

the source, while the scalar potential is dependent on the

location with both r and θ. And the second term in (40) can

be omitted as r becomes small in the near field.

An incident plane wave can be defined from the spherical

wave of the Hertzian dipole radiating from the far field. The

incident vector potential can be approximated as

Ainc = µIlℓ̂
eik|R+r|

4π | R + r |
≈ µIlℓ̂

eikr

4πr
eiki·r, | R |≫| r | .

(41)

Subsequently, it can be written in terms of two components

with a⊥ perpendicular to the wave propagation direction and

a‖ the longitudinal component, namely

Ainc = (a⊥ + a‖)e
iki·r, (42)

where ki is along r direction. The two components indicate

the incident angle of the vector potential. The scalar potentials

can be derived accordingly as follows

iωǫΦinc = ∇ · Ainc/µ =
i

µ
ki · a‖e

iki·r. (43)

The longitudinal component vanishes in the incident scalar

potential. Under the perpendicularly incidence of the vector

potential, a‖ = 0. The incident scalar potential equals to zero,

which could happen in the broadside direction of a dipole. This

is also known as the Φ = 0 gauge or radiation gauge. These

incident potentials defined by hertzian dipole can proved to be

able to reveal the incident electric field of plane wave as

Einc = iωAinc −∇Φinc = iωAinc −
∇∇ · Ainc

iωµǫ

=
iki × (iki × Ainc)

iωµǫ
= iωa⊥e

iki·r (44)

And the magnetic field

Binc = ∇× Ainc = iki × a⊥e
iki·r, (45)

The existence of the longitudinal component in Ainc indicates

that the potential still exists even if both Einc and Hinc are

zero.

B. Local Source Excitation

For circuit problems, a local excitation with delta-gap source

is desired. It is an approximation of an impressed uniform

electric field between a thin gap. However, it is difficult to

directly compute the potentials from the impressed electric

field due to the discontinuity of the field. Actually, the circuit

can be excited by an arbitrary impressed field at the port area

and then gradually becomes stable. The electric field Einc =
iωAinc −∇Φinc, where Ainc denotes the contribution from the

current while Φinc denotes the contribution from the charge.

A scalar potential based excitation can be found in [43].

The physical meaning here for the delta-gap source is

different from that in [43]. As illustrated in Fig. 7, a

toroidal solenoid with slow-varying current provides a quasi-

magnetostatic field which is trapped inside the solenoid.

Outside the solenoid, B = 0, however, the potential A still

exists. The magnetic dipole works as the primary winding in

a transformer. Due to the existence of the vector potential, the

electrical dipole gets excited as a secondary winding. Similar

to the definition of voltage delta-gap source [44], in order
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Fig. 7. Vector potential based local excitation at the port area.

to simplify the computation cost, a potential-based delta-gap

source approximation is defined here with

αinc(r) =

{

α0, r in the port area

0 , otherwise,
(46)

where one can attach each port to a given potential αinc = α0,

while the potentials for the rest of the edges are set to be 0. If

multiple ports are defined for a problem at different locations,

one can even attach a constant potential to a given port and

grounding the others. By this way, the port information, such

as input impedance, can be easily obtained for each port

respectively. The source does not have a Φinc contribution since

there is no charge accumulation.

Assuming the gap width of the delta-gap model to be ∆z ,

the port voltage V then can be computed from the electric

field

V = Einc ·∆z ẑ = iωAinc ·∆z ẑ. (47)

Since the vector potential is originally generated by a current

in the toroidal solenoid, the source defined by A can be

understood as the voltage source generated by the currents.

The input impedance can be obtained accordingly after solving

the integral equation.

VI. LARGE-SCALE COMPUTATIONS

It is to be noted that the only integral kernel in the A-Φ
formulation is the scalar Green’s function, which enables the

easy integration of existing fast multipole algorithms (FMA).

Then it is possible for us to use the A-Φ formulation to solve

real-world large-scale problems efficiently. In this work, we

incorporate the mixed-form FMA which expands the field with

mutipoles at low frequencies and with plane waves at middle

frequencies [45].

On the other hand, the fast computation with respect to the

preconditioner is another important issue. As indicated in (27),

the computation cost for the preconditioner is determined by

the computation of S
−1

. The Schur complement S is originally

a dense matrix. There are mature mathematical techniques to

quickly obtain an inverse of a sparse matrix. Due to the scalar
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Fig. 8. Far field RCS result for a unit PEC sphere at 300 MHz.

Green’s function, the self-interactions are significant in all the

block matrices Γij , (i, j = 1, 2). Then the fast approximate

inverse of S can be achieved by taking the sparse matrix as

S
′
= k20diag(Γ22)− diag(Γ21) · G

−1
· diag(Γ

T

21), (48)

where the notation “diag” denotes taking the diagonal ele-

ments. Here Γ21 is not a square matrix, so the elements in

diag(Γ21) and diag(Γ
T

21) denote the self-interaction terms be-

tween the patches and their edges. Here we use the multifrontal

method as a fast direct solver to obtain the approximate inverse

of the Schur complement. The diagonal scheme can also be

applied on the matrix Γ21 in (27).

Typically, the computational complexity of the A-Φ formu-

lation solver including the preconditioner part can be achieved

as proportional to N logN , where N is the number of un-

knowns (N = Nedges +Npatches).

Some trade off on the convergence is expected when the

sparse scheme is applied on the preconditioner. Here, we apply

the lease cost way to build the constaint precondtioner by

taking the diagonals only to observe its performance limit. For

better clarification, we denote the system with preconditioner

(27) as ”preconditioned A-Φ” and the system with sparse

approximation in the preconditioner as ”sparse preconditioned

A-Φ”. The comparison between these two preconditioning

strategies will be given in the numerical results.

VII. NUMERICAL RESULTS

A. Plane Wave Scattering

1) PEC Sphere: The scattering of a unit PEC sphere is

shown here. When the unknown number is not large, the A-

Φ formulation can be solved using direct method without a

preconditioner. The system can achieve good accuracy until

very low frequencies. Figures 8 and 9 plot the scattering cross

section (SCS) results for the PEC sphere at 300 MHz and

50 Hz respectively (Φinc 6= 0). The results solved by A-Φ
formulation match well with the analytical solutions.

While the iterative solver is employed, Table I and Table II

present the iteration numbers for different methods at different
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TABLE I
NUMBER OF ITERATIONS FOR A-EFIE AND A-Φ SYSTEMS FOR A SPHERE

MODEL WITH 867 UNKNOWNS. TOL = 10−7

Freq (MHz) A-EFIE M
−1

·A-EFIE A-Φ P
−1

c
· (A-Φ)

100 266 40 463 34

10 186 29 179 20

1 168 28 164 16

0.1 160 28 211 9

frequencies. Here, the restarted generalized minimal residual

(GMRES) method with a restart number of 50 (denoted as

GMRES-50) is incorporated. The error tolerance for the iter-

ative solver is 10−7. In Table I, the sphere is discretized with

578 triangle patches and 867 edges. It is shown that, without

preconditioners, the convergence of the A-Φ formulation is

better than A-EFIE; however, it is unstable at higher or

lower frequencies. The system can be efficiently stabilized

by the P−1
c preconditioner, which is especially effective and

converges much faster than A-EFIE at low frequencies. Here

the inverse of the Schur complement is obtained by using

the direct solver. Table II describes the iteration information

of the scattering for a PEC sphere which is discretized into

1,568 triangle patches and 2,352 edges. From the results, it

can be concluded that the A-Φ formulation after precondi-

tioning shows better performance over the original A-EFIE for

denser meshes. Although the system is not free from interior

resonance problem at high frequencies, it presents a fast and

stable convergence regardless of the increase of the unknown

number at low frequencies.

2) PEC Cube: Further results with various mesh densities

are computed with a PEC cube whose shape does not change

with different discretizations. The cube has side length of 1

m. Also, the comparison between the A-Φ formulation with

and without sparse preconditioning approximation is given.

Fig. 10(a) shows the iteration number of different solvers

with mesh densities at 100 MHz (with the total electrical size

of 0.33λ). Here an iterative solver with GMRES-50 is used

TABLE II
NUMBER OF ITERATIONS FOR DIFFERENT METHODS FOR A SPHERE

MODEL WITH 2,352 UNKNOWNS. TOL = 10−7

Freq (MHz) A-EFIE M
−1

·A-EFIE A-Φ P
−1

c
· (A-Φ)

100 330 46 645 32

10 238 35 196 22

1 206 34 170 17

0.1 195 34 212 10

and h denotes the average discretized triangle edge length.

A standard loop-tree decomposition method (with frequency

normalization) is shown here for comparison and it fails

to converge when the discretization becomes denser. While

the systems with A-EFIE and A-Φ formulation (both with

constraint preconditioner) achieve stable convergence. The

sparse preconditioned A-Φ formulation shows quite a slower

convergence compared to the original precondtioned one. Also,

it is noted that both of them show better performance over A-

EFIE on the convergence rate. The advantage becomes more

significant when the frequency is lower, especially for the

original precodntioned A-Φ formulation, as shown in Fig.

10(b) with the frequency of 10 kHz (with the total electrical

size of 0.33× 10−4λ).

3) Multiply-connected Structure: The computation of

multiply-connected structures recently gains much attention

for the existence of magnetostatic nullspaces at the static limit.

Electric-field-based integral equations do not suffer from this

problem. Physically, the potential-based integral equation is

also immune from this nullspace problem because, as in the

cases of Aharonov-Bohm effect, the potentials still exist and

describe the physics even with a null magnetic field.

Here, a 1-genus toroidal structure is presented to validate the

accuracy of A-Φ formulation in solving multiply-connected

problems. The total dimension of the object is 0.8m× 0.8m×
0.2m and the radius of the torus tube is 0.1m. The model

is discretized into 1,076 triangle patches with 1,614 edges.

The working frequency is chosen to be a low frequency at

100 kHz. Under a plane-wave excitation, as shown in Fig.

11, the far-field scattering results of A-Φ formulation agrees

well with that computed with EFIE. The subfigure in Fig. 11

plots the current distribution on the torus surface, which also

matches well with that solved from EFIE. With the constraint

preconditioner, the A-Φ formulation achieves a much better

convergence (GMRES-50) as shown in 12.

4) NASA Almond: We then consider a NASA almond with

the dimension of 3.37λ×1.30λ×0.43λ at 4 GHz. The structure

contains sharp edges and a pointed corner. It is discretized

into 2,907 edges and 1,938 triangle patches, as shown in

Fig. 13(a). The simple EFIE is capable of handling the

accuracy for computing such a problem. Fig. 13(b) plots the far

field scattering results for A-Φ formulation and the diagonal

preconditioned EFIE, which match well with each other. The

figure in the center of Fig. 13(b) shows the current distribution

on the almond surface. With the constraint preconditioner,

the A-Φ formulation can converge in 98 iteration steps for a
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GMRES-100 iterative solver with an error tolerance of 10−7 .

While EFIE converges to the same error tolerance after 5000

iteration steps.
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Fig. 14. (a) Geometry of the parallel-plate capacitor model, (b) Current
distribution of the capacitor at 10 MHz. Unit: 20 log10(A/m).
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B. Electrostatic Problem

For the electrostatic problem, an example of a 5 mm ×
4 mm × 0.5 mm parallel-plate capacitor is considered. As

presented in Fig. 14(a), the capacitor is discretized into 2,288

edges and 1,576 triangle patches. A potential-based delta-

gap source is applied in the central edges of the connected

bridge between the two plates. Fig. 14(b) shows the current

distribution of the capacitor solved using A-Φ formulation.

The current is largest at the port area and then gradually

vanishes to the open end. Using the input impedance at port

edges, the capacitance is calculated to be 0.47 pF, which is

the same as the A-EFIE result. The convergence information

of two different mesh densities is compared in Fig. 15 for

A-EFIE and A-Φ formulation at 10 MHz. Mesh 1 is denser

with 2,288 edges while mesh 2 has for 553 edges. The A-

Φ method converges much faster than the original A-EFIE

method regardless of the mesh densities.

C. Magnetostatic Problem

The magnetostatic problem is discussed here with a strip

loop inductor as shown in Fig. 16. This is also a multiply-

connected structure. Generally, the magnetostatic nullspace

problems should be considered more carefully in the local-

excited multiply-connected structures than in the scattering

problems, since lumped elements usually work at low frequen-

cies and the global-loop currents are very important modal
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Unit: mPort Edges
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y

Fig. 16. The model of a rectangular loop structure.
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counterparts in local-excited problem solutions. Here, the loop

inductor is discretized into 1,017 edges and 678 triangle

patches. Similar to the case of the capacitor, a potential-based

delta-gap source is assigned in the middle of the bottom side

as shown in the figure. In Fig. 17, the inductance is calculated

according to input impedance for EFIE, A-EFIE and A-Φ
formulation, respectively. The computed inductance using the

three methods match well with each other at higher frequencies

until several hundred kHz. As frequencies continually lowers,

low-frequency breakdown problem starts to emerge in EFIE

and the computed inductance begins to diverge. The result

from A-Φ formulation still remains stable until very low

frequencies and shows good agreement with that of A-EFIE.

At the frequency of 10−5 GHz, when EFIE does not converge

due to low-frequency breakdown, our proposed method still

converges well and better than A-EFIE as shown in Fig. 18.

D. Four-port Interconnects System

A four-port board plate structure with two pairs of inter-

connects is presented here. The structure is a part cut from a

realistic package board, which is discretized into 27,315 inner

edges and 19,870 triangle patches. Fig. 19 shows the current

distribution on the metallic board at 20 GHz with the delta-

gap excitation at port 1. The sub-figure presented in the blue

ellipse on the right bottom of Fig. 19 describes the multi-

scale discretization with the mesh elements of maximum edge

length λ/10 and minimum edge length λ/3000.
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Fig. 19. The current distribution of the four-port interconnects under delta-
gap excitation at port 1. Frequency: 20 GHz. Unit: 20 log10(A/m). The top
view of the current distribution and the discretization are shown in sub figures.

Fig. 20 plots the magnitude of the input impedances Y11 and

Y21 from 0.25 GHz to 40 GHz with 160 frequency points.

The results agree well with those calculated with A-EFIE

method. Here, a mixed-form multi-layer FMA with 5 layers

is incorporated in the solver and the average iteration step is

approximately to be 40 for each frequency point (GMRES-

100, error tolerance: 10−3).

Also, the convergence information is plotted here by sweep-

ing the frequency from 2 GHz to 20 GHz. As shown in

Fig. 21, the sparse preconditioned A-Φ formulation shows an

advantage over A-EFIE (with constraint preconditioner) on the

convergence over a wide range of frequencies.

VIII. CONCLUSION

In this paper, an integral form of the potential-based

formulation has been proposed and implemented to solve
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Fig. 21. The convergence information for the four-port interconnects problem
solved with A-EFIE and the A-Φ formulation.

electromagnetic problems over a wide band frequency range.

The system, which is applicable to both scattering and cir-

cuit problems, has been validated as immune to the low-

frequency catastrophe, the ill-conditioning with dense mesh

and magnetostatic nullspace problem. The integral kernel

of the formulation is just the Green’s function; thus it is

convenient to incorporate existing fast solvers to solve real

world problems with large number of unknowns. Since the

equation is formulated with potentials instead of fields, and

works well for long-wavelength situations, it is possible to

couple with the quantum theory to solve quantum effects

problems where the problem sizes are usually much smaller

compared to the wavelength.
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