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Abstract—Tensors or multi-way arrays are functions of three or
more indices (i, j, k, · · · ) – similar to matrices (two-way arrays),
which are functions of two indices (r, c) for (row,column). Tensors
have a rich history, stretching over almost a century, and touching
upon numerous disciplines; but they have only recently become
ubiquitous in signal and data analytics at the confluence of
signal processing, statistics, data mining and machine learning.
This overview article aims to provide a good starting point for
researchers and practitioners interested in learning about and
working with tensors. As such, it focuses on fundamentals and
motivation (using various application examples), aiming to strike
an appropriate balance of breadth and depth that will enable
someone having taken first graduate courses in matrix algebra
and probability to get started doing research and/or developing
tensor algorithms and software. Some background in applied
optimization is useful but not strictly required. The material
covered includes tensor rank and rank decomposition; basic
tensor factorization models and their relationships and properties
(including fairly good coverage of identifiability); broad coverage
of algorithms ranging from alternating optimization to stochastic
gradient; statistical performance analysis; and applications rang-
ing from source separation to collaborative filtering, mixture and
topic modeling, classification, and multilinear subspace learning.
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decomposition (HOSVD), multilinear singular value decompo-
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dient descent, Gauss-Newton, stochastic gradient, Cramér-Rao
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modeling, classification, subspace learning.
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I. INTRODUCTION

Tensors1 (of order higher than two) are arrays indexed by

three or more indices, say (i, j, k, · · · ) – a generalization of

matrices, which are indexed by two indices, say (r, c) for (row,

column). Matrices are two-way arrays, and there are three- and

higher-way arrays (or higher-order) tensors.

Tensor algebra has many similarities but also many striking

differences with matrix algebra – e.g., low-rank tensor factor-

ization is essentially unique under mild conditions; determin-

ing tensor rank is NP-hard, on the other hand, and the best low-

rank approximation of a higher rank tensor may not even exist.

Despite such apparent paradoxes and the learning curve needed

to digest tensor algebra notation and data manipulation, tensors

have already found many applications in signal processing

(speech, audio, communications, radar, biomedical), machine

learning (clustering, dimensionality reduction, latent factor

models, subspace learning), and well beyond. Psychometrics

(loosely defined as mathematical methods for the analysis

of personality data) and later Chemometrics (likewise, for

chemical data) have historically been two important applica-

tion areas driving theoretical and algorithmic developments.

Signal processing followed, in the 90’s, but the real spark

that popularized tensors came when the computer science

community (notably those in machine learning, data mining,

computing) discovered the power of tensor decompositions,

roughly a decade ago [1]–[3]. There are nowadays many

hundreds, perhaps thousands of papers published each year on

tensor-related topics. Signal processing applications include,

e.g., unsupervised separation of unknown mixtures of speech

signals [4] and code-division communication signals without

knowledge of their codes [5]; and emitter localization for

radar, passive sensing, and communication applications [6],

[7]. There are many more applications of tensor techniques

that are not immediately recognized as such, e.g., the ana-

lytical constant modulus algorithm [8], [9]. Machine learning

applications include face recognition, mining musical scores,

and detecting cliques in social networks – see [10]–[12] and

references therein. More recently, there has been considerable

work on tensor decompositions for learning latent variable

models, particularly topic models [13], and connections be-

tween orthogonal tensor decomposition and the method of

moments for computing the Latent Dirichlet Allocation (LDA

– a widely used topic model).

1The term has different meaning in Physics, however it has been widely
adopted across various disciplines in recent years to refer to what was
previously known as a multi-way array.
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After two decades of research on tensor decompositions and

applications, the senior co-authors still couldn’t point their new

graduate students to a single “point of entry” to begin research

in this area. This article has been designed to address this

need: to provide a fairly comprehensive and deep overview of

tensor decompositions that will enable someone having taken

first graduate courses in matrix algebra and probability to get

started doing research and/or developing related algorithms

and software. While no single reference fits this bill, there

are several very worthy tutorials and overviews that offer

different points of view in certain aspects, and we would like

to acknowledge them here. Among them, the highly-cited and

clearly-written tutorial [14] that appeared 7 years ago in SIAM
Review is perhaps the one closest to this article. It covers

the basic models and algorithms (as of that time) well, but

it does not go deep into uniqueness, advanced algorithmic,

or estimation-theoretic aspects. The target audience of [14] is

applied mathematics (SIAM). The recent tutorial [11] offers

an accessible introduction, with many figures that help ease

the reader into three-way thinking. It covers most of the bases

and includes many motivating applications, but it also covers

a lot more beyond the basics and thus stays at a high level.

The reader gets a good roadmap of the area, without delving

into it enough to prepare for research. Another recent tutorial

on tensors is [15], which adopts a more abstract point of view

of tensors as mappings from a linear space to another, whose

coordinates transform multilinearly under a change of bases.

This article is more suited for people interested in tensors

as a mathematical concept, rather than how to use tensors in

science and engineering. It includes a nice review of tensor

rank results and a brief account of uniqueness aspects, but

nothing in the way of algorithms or tensor computations.

An overview of tensor techniques for large-scale numerical

computations is given in [16], [17], geared towards a sci-

entific computing audience; see [18] for a more accessible

introduction. A gentle introduction to tensor decompositions

can be found in the highly cited Chemometrics tutorial [19]

– a bit outdated but still useful for its clarity – and the more

recent book [20]. Finally, [21] is an upcoming tutorial with

emphasis on scalability and data fusion applications – it does

not go deep into tensor rank, identifiability, decomposition

under constraints, or statistical performance benchmarking.

None of the above offers a comprehensive overview that

is sufficiently deep to allow one to appreciate the underlying

mathematics, the rapidly expanding and diversifying toolbox

of tensor decomposition algorithms, and the basic ways in

which tensor decompositions are used in signal processing and

machine learning – and they are quite different. Our aim in

this paper is to give the reader a tour that goes ‘under the

hood’ on the technical side, and, at the same time, serve as

a bridge between the two areas. Whereas we cannot include

detailed proofs of some of the deepest results, we do provide

insightful derivations of simpler results and sketch the line of

argument behind more general ones. For example, we include

a one-page self-contained proof of Kruskal’s condition when

one factor matrix is full column rank, which illuminates the

role of Kruskal-rank in proving uniqueness. We also ‘translate’

between the signal processing (SP) and machine learning

(ML) points of view. In the context of the canonical polyadic

decomposition (CPD), also known as parallel factor analysis

(PARAFAC), SP researchers (and Chemists) typically focus on

the columns of the factor matrices A, B, C and the associated

rank-1 factors af � bf � cf of the decomposition (where �
denotes the outer product, see section II-C), because they are

interested in separation. ML researchers often focus on the

rows of A, B, C, because they think of them as parsimonious

latent space representations. For a user × item × context

ratings tensor, for example, a row of A is a representation of

the corresponding user in latent space, and likewise a row of B
(C) is a representation of the corresponding item (context) in

the same latent space. The inner product of these three vectors

is used to predict that user’s rating of the given item in the

given context. This is one reason why ML researchers tend to

use inner (instead of outer) product notation. SP researchers

are interested in model identifiability because it guarantees

separability; ML researchers are interested in identifiability

to be able to interpret the dimensions of the latent space.

In co-clustering applications, on the other hand, the rank-1

tensors af � bf � cf capture latent concepts that the analyst

seeks to learn from the data (e.g., cliques of users buying

certain types of items in certain contexts). SP researchers

are trained to seek optimal solutions, which is conceivable

for small to moderate data; they tend to use computationally

heavier algorithms. ML researchers are nowadays trained to

think about scalability from day one, and thus tend to choose

much more lightweight algorithms to begin with. There are

many differences, but also many similarities and opportunities

for cross-fertilization. Being conversant in both communities

allows us to bridge the ground between and help SP and ML

researchers better understand each other.

A. Roadmap

The rest of this article is structured as follows. We begin

with some matrix preliminaries, including matrix rank and

low-rank approximation, and a review of some useful matrix

products and their properties. We then move to rank and rank

decomposition for tensors. We briefly review bounds on tensor

rank, multilinear (mode-) ranks, and relationship between

tensor rank and multilinear rank. We also explain the notions

of typical, generic, and border rank, and discuss why low-

rank tensor approximation may not be well-posed in general.

Tensors can be viewed as data or as multi-linear operators,

and while we are mostly concerned with the former viewpoint

in this article, we also give a few important examples of the

latter as well. Next, we provide a fairly comprehensive account

of uniqueness of low-rank tensor decomposition. This is the

most advantageous difference when one goes from matrices to

tensors, and therefore understanding uniqueness is important

in order to make the most out of the tensor toolbox. Our

exposition includes two stepping-stone proofs: one based on

eigendecomposition, the other bearing Kruskal’s mark (“down-

converted to baseband” in terms of difficulty). The Tucker

model and multilinear SVD come next, along with a discussion

of their properties and connections with rank decomposition. A

thorough discussion of algorithmic aspects follows, including
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a detailed discussion of how different types of constraints

can be handled, how to exploit data sparsity, scalability, how

to handle missing values, and different loss functions. In

addition to basic alternating optimization strategies, a host

of other solutions are reviewed, including gradient descent,

line search, Gauss-Newton, alternating direction method of

multipliers, and stochastic gradient approaches. The next topic

is statistical performance analysis, focusing on the widely-used

Cramér-Rao bound and its efficient numerical computation.

This section contains novel results and derivations that are

of interest well beyond our present context – e.g., can also

be used to characterize estimation performance for a broad

range of constrained matrix factorization problems. The final

main section of the article presents motivating applications

in signal processing (communication and speech signal sep-

aration, multidimensional harmonic retrieval) and machine

learning (collaborative filtering, mixture and topic modeling,

classification, and multilinear subspace learning). We conclude

with some pointers to online resources (toolboxes, software,

demos), conferences, and some historical notes.

II. PRELIMINARIES

A. Rank and rank decomposition for matrices

Consider an I × J matrix X, and let colrank(X) := the

number of linearly independent columns of X, i.e., the di-

mension of the range space of X, dim(range(X)). colrank(X)
is the minimum k ∈ N such that X = ABT , where A is

an I × k basis of range(X), and BT is k × J and holds

the corresponding coefficients. This is because if we can

generate all columns of X, by linearity we can generate

anything in range(X), and vice-versa. We can similarly define

rowrank(X) := the number of linearly independent rows of X
= dim(range(XT )), which is the minimum � ∈ N such that

XT = BAT ⇐⇒ X = ABT , where B is J × � and AT is

�× I . Noting that

X = ABT = A(:, 1)(B(:, 1))T + · · ·+A(:, �)(B(:, �))T ,

where A(:, �) stands for the �-th column of A, we have

X = a1b
T
1 + · · ·+ a�b

T
� ,

where A = [a1, · · · ,a�] and B = [b1, · · · ,b�]. It follows

that colrank(X) = rowrank(X) = rank(X), and rank(X) =
minimum m such that X =

∑m
n=1 anb

T
n , so the three def-

initions actually coincide – but only in the matrix (two-way

tensor) case, as we will see later. Note that, per the definition

above, abT is a rank-1 matrix that is ‘simple’ in the sense

that every column (or row) is proportional to any other column

(row, respectively). In this sense, rank can be thought of as a

measure of complexity. Note also that rank(X) ≤ min(I, J),
because obviously X = XI, where I is the identity matrix.

B. Low-rank matrix approximation

In practice X is usually full-rank, e.g., due to measurement

noise, and we observe X = L + N, where L = ABT is

low-rank and N represents noise and ‘unmodeled dynamics’.

If the elements of N are sampled from a jointly continuous

distribution, then N will be full rank almost surely – for the

determinant of any square submatrix of N is a polynomial

in the matrix entries, and a polynomial that is nonzero at one

point is nonzero at every point except for a set of measure zero.

In such cases, we are interested in approximating X with a

low-rank matrix, i.e., in

min
L | rank(L)=�

||X− L||2F ⇐⇒ min
A∈RI×�, B∈RJ×�

||X−ABT ||2F .

The solution is provided by the truncated SVD of X, i.e.,

with X = UΣVT , set A = U(:, 1 : �)Σ(1 : �, 1 : �),
B = V(:, 1 : �) or L = U(:, 1 : �)Σ(1 : �, 1 : �)(V(:, 1 : �))T ,

where U(:, 1 : �) denotes the matrix containing columns 1
to � of U. However, this factorization is non-unique because

ABT = AMM−1BT = (AM)(BM−T )T , for any nonsin-

gular �×� matrix M, where M−T = (M−1)T . In other words:

the factorization of the approximation is highly non-unique

(when � = 1, there is only scaling ambiguity, which is usually

inconsequential). As a special case, when X = L (noise-free)

so rank(X) = �, low-rank decomposition of X is non-unique.

C. Some useful products and their properties

In this section we review some useful matrix products and

their properties, as they pertain to tensor computations.

Kronecker product: The Kronecker product of A (I ×K) and

B (J × L) is the IJ ×KL matrix

A⊗B :=

⎡⎢⎢⎢⎣
BA(1, 1) BA(1, 2) · · · BA(1,K)
BA(2, 1) BA(2, 2) · · · BA(2,K)

...
... · · · ...

BA(I, 1) BA(I, 2) · · · BA(I,K)

⎤⎥⎥⎥⎦
The Kronecker product has many useful properties. From its

definition, it follows that bT ⊗a = abT . For an I ×J matrix

X, define

vec(X) :=

⎡⎢⎢⎢⎣
X(:, 1)
X(:, 2)

...

X(:, J)

⎤⎥⎥⎥⎦ ,

i.e., the IJ × 1 vector obtained by vertically stacking

the columns of X. By definition of vec(·) it follows that

vec(abT ) = b⊗ a.

Consider the product AMBT , where A is I × K, M is

K × L, and B is J × L. Note that

AMBT =

(
K∑

k=1

A(:, k)M(k, :)

)
BT

=

K∑
k=1

L∑
�=1

A(:, k)M(k, �)(B(:, �))T .

Therefore, using vec(abT ) = b⊗a and linearity of the vec(·)
operator

vec
(
AMBT

)
=

K∑
k=1

L∑
�=1

M(k, �)B(:, �)⊗A(:, k)

= (B⊗A) vec(M).
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This is useful when dealing with linear least squares prob-

lems of the following form

min
M

||X−AMBT ||2F ⇐⇒ min
m

||vec(X)− (B⊗A)m||22,

where m := vec(M).
Khatri–Rao product: Another useful product is the Khatri–

Rao (column-wise Kronecker) product of two matrices with
the same number of columns (see [20, p. 14] for a gen-

eralization). That is, with A = [a1, · · · ,a�] and B =
[b1, · · · ,b�], the Khatri–Rao product of A and B is A �B
:= [a1 ⊗ b1, · · ·a� ⊗ b�]. It is easy to see that, with D being

a diagonal matrix with vector d on its diagonal (we will write

D = Diag(d), and d = diag(D), where we have implicitly

defined operators Diag(·) and diag(·) to convert one to the

other), the following property holds

vec
(
ADBT

)
= (B�A)d,

which is useful when dealing with linear least squares prob-

lems of the following form

min
D=Diag(d)

||X−ADBT ||2F ⇐⇒ min
d

||vec(X)− (B�A)d||22.

It should now be clear that the Khatri–Rao product B�A is a

subset of columns from B⊗A. Whereas B⊗A contains the

‘interaction’ (Kronecker product) of any column of A with

any column of B, B�A contains the Kronecker product of

any column of A with only the corresponding column of B.

Additional properties:
• (A⊗B)⊗C = A⊗ (B⊗C) (associative); so we may

simply write as A⊗B⊗C. Note though that A⊗B �=
B⊗A, so the Kronecker product is non-commutative.

• (A ⊗ B)T = AT ⊗ BT (note order, unlike (AB)T =
BTAT ).

• (A⊗B)∗ = A∗⊗B∗ =⇒ (A⊗B)H = AH⊗BH , where
∗, H stand for conjugation and Hermitian (conjugate)

transposition, respectively.

• (A ⊗ B)(E ⊗ F) = (AE ⊗ BF) (the mixed product
rule). This is very useful – as a corollary, if A and B
are square nonsingular, then it follows that (A⊗B)−1 =
A−1 ⊗ B−1, and likewise for the pseudo-inverse. More

generally, if A = U1Σ1V
T
1 is the SVD of A, and

B = U2Σ2V
T
2 is the SVD of B, then it follows from

the mixed product rule that A ⊗ B = (U1Σ1V
T
1 ) ⊗

(U2Σ2V
T
2 ) = (U1 ⊗U2)(Σ1 ⊗Σ2)(V1 ⊗V2)

T
2 is the

SVD of A⊗B. It follows that

• rank(A⊗B) = rank(A)rank(B).
• tr(A⊗B) = tr(A)tr(B), for square A, B.

• det(A⊗B) = det(A)det(B), for square A, B.

The Khatri–Rao product has the following properties, among

others:

• (A�B)�C = A� (B�C) (associative); so we may

simply write as A�B�C. Note though that A�B �=
B�A, so the Khatri–Rao product is non-commutative.

• (A⊗B)(E�F) = (AE)� (BF) (mixed product rule).

Tensor (outer) product: The tensor product or outer product
of vectors a (I × 1) and b (J × 1) is defined as the I × J
matrix a � b with elements (a � b)(i, j) = a(i)b(j), ∀i, j.

Fig. 1: Schematic of a rank-1 tensor.

Note that a�b = abT . Introducing a third vector c (K× 1),
we can generalize to the outer product of three vectors, which

is an I×J×K three-way array or third-order tensor a�b�c
with elements (a � b � c)(i, j, k) = a(i)b(j)c(k). Note

that the element-wise definition of the outer product naturally

generalizes to three- and higher-way cases involving more

vectors, but one loses the ‘transposition’ representation that

is familiar in the two-way (matrix) case.

III. RANK AND RANK DECOMPOSITION FOR TENSORS:

CPD / PARAFAC

We know that the outer product of two vectors is a ‘simple’

rank-1 matrix – in fact we may define matrix rank as the

minimum number of rank-1 matrices (outer products of two

vectors) needed to synthesize a given matrix. We can express

this in different ways: rank(X) = F if and only if (iff)

F is the smallest integer such that X = ABT for some

A = [a1, · · · ,aF ] and B = [b1, · · · ,bF ], or, equivalently,

X(i, j) =
∑F

f=1 A(i, f)B(j, f) =
∑F

f=1 af (i)bf (j), ∀i, j
⇐⇒ X =

∑F
f=1 af � bf =

∑F
f=1 afb

T
f .

A rank-1 third-order tensor X of size I × J × K is an

outer product of three vectors: X(i, j, k) = a(i)b(j)c(k),
∀i ∈ {1, · · · , I}, j ∈ {1, · · · , J}, and k ∈ {1, · · · ,K}; i.e.,

X = a � b � c – see Fig. 1. A rank-1 N -th order tensor X
is likewise an outer product of N vectors: X(i1, · · · , iN ) =
a1(i1) · · ·aN (iN ), ∀in ∈ {1, · · · , In}, ∀n ∈ {1, · · · , N}; i.e.,

X = a1 � · · ·� aN . In the sequel we mostly focus on third-

order tensors for brevity; everything naturally generalizes to

higher-order tensors, and we will occasionally comment on

such generalization, where appropriate.
The rank of tensor X is the minimum number of rank-1

tensors needed to produce X as their sum – see Fig. 2 for a

tensor of rank three. Therefore, a tensor of rank at most F
can be written as

X =

F∑
f=1

af �bf �cf ⇐⇒ X(i, j, k) =

F∑
f=1

af (i)bf (j)cf (k)

=

F∑
f=1

A(i, f)B(j, f)C(k, f),

⎧⎨⎩∀
i ∈ {1, · · · , I}
j ∈ {1, · · · , J}
k ∈ {1, · · · ,K}

where A := [a1, · · · ,aF ], B := [b1, · · · ,bF ], and C :=
[c1, · · · , cF ]. It is also customary to use ai,f := A(i, f), so

X(i, j, k) =
∑F

f=1 ai,f bj,fck,f . For brevity, we sometimes

also use the notation X = �A,B,C� to denote the relationship

X =
∑F

f=1 af � bf � cf .
Let us now fix k = 1 and look at the frontal slab X(:, :, 1)

of X. Its elements can be written as

X(i, j, 1) =

F∑
f=1

af (i)bf (j)cf (1)
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Fig. 2: Schematic of tensor of rank three.

=⇒ X(:, :, 1) =

F∑
f=1

afb
T
f cf (1) =

ADiag([c1(1), c2(1), · · · , cF (1)])BT = ADiag(C(1, :))BT ,

where we note that the elements of the first row of C weigh

the rank-1 factors (outer products of corresponding columns

of A and B). We will denote Dk(C) := Diag(C(k, :)) for

brevity. Hence, for any k,

X(:, :, k) = ADk(C)BT .

Applying the vectorization property of � it now follows that

vec(X(:, :, k)) = (B�A)(C(k, :))T ,

and by parallel stacking, we obtain the matrix unfolding (or,

matrix view)

X3 := [vec(X(:, :, 1)), vec(X(:, :, 2)), · · · , vec(X(:, :,K))] →
X3 = (B�A)CT , (IJ ×K). (1)

We see that, when cast as a matrix, a third-order tensor of rank

F admits factorization in two matrix factors, one of which is
specially structured – being the Khatri–Rao product of two

smaller matrices. One more application of the vectorization

property of � yields the IJK × 1 vector

x3 = (C� (B�A))1 = (C�B�A)1,

where 1 is an F × 1 vector of all 1’s. Hence, when converted

to a long vector, a tensor of rank F is a sum of F structured
vectors, each being the Khatri–Rao / Kronecker product of

three vectors (in the three-way case; or more vectors in higher-

way cases).

In the same vain, we may consider lateral or horizontal

slabs2, e.g.,

X(:, j, :) = ADj(B)CT → vec(X(:, j, :)) = (C�A)(B(j, :))T .

Hence

X2 := [vec(X(:, 1, :)), vec(X(:, 2, :)), · · · , vec(X(:, J, :))] →
X2 = (C�A)BT , (IK × J), (2)

and similarly3 X(i, :, :) = BDi(A)CT , so

X1 := [vec(X(1, :, :)), vec(X(2, :, :)), · · · , vec(X(I, :, :))] →
X1 = (C�B)AT , (KJ × I). (3)

2A warning for Matlab aficionados: due to the way that Matlab stores and
handles tensors, one needs to use the ‘squeeze’ operator, i.e., squeeze(X(:
, j, :)) = ADj(B)CT , and vec(squeeze(X(:, j, :))) = (C�A)(B(j, :))T .

3One needs to use the ‘squeeze’ operator here as well.

A. Low-rank tensor approximation

We are in fact ready to get a first glimpse on how we can

go about estimating A, B, C from (possibly noisy) data X.

Adopting a least squares criterion, the problem is

min
A,B,C

||X−
F∑

f=1

af � bf � cf ||2F ,

where ||X||2F is the sum of squares of all elements of X (the

subscript F in || · ||F stands for Frobenius (norm), and it

should not be confused with the number of factors F in the

rank decomposition – the difference will always be clear from

context). Equivalently, we may consider

min
A,B,C

||X1 − (C�B)AT ||2F .

Note that the above model is nonconvex (in fact trilinear) in

A, B, C; but fixing B and C, it becomes (conditionally) linear

in A, so that we may update

A ← argmin
A

||X1 − (C�B)AT ||2F ,
and, using the other two matrix representations of the tensor,

update

B ← argmin
B

||X2 − (C�A)BT ||2F ,
and

C ← argmin
C

||X3 − (B�A)CT ||2F ,
until convergence. The above algorithm, widely known as Al-
ternating Least Squares (ALS) is a popular way of computing

approximate low-rank models of tensor data. We will discuss

algorithmic issues in depth at a later stage, but it is important

to note that ALS is very easy to program, and we encourage

the reader to do so – this exercise helps a lot in terms of

developing the ability to ‘think three-way’.

B. Bounds on tensor rank

For an I×J matrix X, we know that rank(X) ≤ min(I, J),
and rank(X) = min(I, J) almost surely, meaning that rank-

deficient real (complex) matrices are a set of Lebesgue mea-

sure zero in R
I×J (CI×J). What can we say about I×J×K

tensors X? Before we get to this, a retrospective on the matrix

case is useful. Considering X = ABT where A is I ×F and

B is J × F , the size of such parametrization (the number of
unknowns, or degrees of freedom (DoF) in the model) of X
is4 (I + J − 1)F . The number of equations in X = ABT

is IJ , and equations-versus-unknowns considerations suggest

that F of order min(I, J) may be needed – and this turns out

being sufficient as well.

For third-order tensors, the DoF in the low-rank

parametrization X =
∑F

f=1 af�bf�cf is5 (I+J+K−2)F ,

whereas the number of equations is IJK. This suggests that

F ≥ 
 IJK
I+J+K−2� may be needed to describe an arbitrary

4Note that we have taken away F DoF due to the scaling / counter-
scaling ambiguity, i.e., we may always multiply a column of A and divide
the corresponding column of B with any nonzero number without changing
ABT .

5Note that here we can scale, e.g., af and bf at will, and counter-scale
cf , which explains the (. . .− 2)F .



6

tensor X of size I × J ×K, i.e., that third-order tensor rank

can potentially be as high as min(IJ, JK, IK). In fact this

turns out being sufficient as well. One way to see this is

as follows: any frontal slab X(:, :, k) can always be written

as X(:, :, k) = AkB
T
k , with Ak and Bk having at most

min(I, J) columns. Upon defining A := [A1, · · · ,AK ],
B := [B1, · · · ,BK ], and C := IK×K ⊗ 11×min(I,J) (where

IK×K is an identity matrix of size K×K, and 11×min(I,J) is

a vector of all 1’s of size 1 ×min(I, J)), we can synthesize

X as X = �A,B,C�. Noting that Ak and Bk have at

most min(I, J) columns, it follows that we need at most

min(IK, JK) columns in A, B, C. Using ‘role symmetry’

(switching the names of the ‘ways’ or ‘modes’), it follows

that we in fact need at most min(IJ, JK, IK) columns in A,

B, C, and thus the rank of any I × J × K three-way array

X is bounded above by min(IJ, JK, IK). Another (cleaner

but perhaps less intuitive) way of arriving at this result is as

follows. Looking at the IJ ×K matrix unfolding

X3 := [vec(X(:, :, 1)), · · · , vec(X(:, :,K))] = (B�A)CT ,

and noting that (B � A) is IJ × F and CT is F × K, the

issue is what is the maximum inner dimension F that we need

to be able to express an arbitrary IJ ×K matrix X3 on the

left (corresponding to an arbitrary I × J × K tensor X) as

a Khatri–Rao product of two I × F , J × F matrices, times

another F ×K matrix? The answer can be seen as follows:

vec(X(:, :, k)) = vec(AkB
T
k ) = (Bk �Ak)1,

and thus we need at most min(I, J) columns per column of

X3, which has K columns – QED.

This upper bound on tensor rank is important because it

spells out that tensor rank is finite, and not much larger than

the equations-versus-unknowns bound that we derived earlier.

On the other hand, it is also useful to have lower bounds on

rank. Towards this end, concatenate the frontal slabs one next

to each other

[X(:, :, 1) · · ·X(:, :,K)] = A
[
Dk(C)BT · · ·Dk(C)BT

]
since X(:, :, k) = ADk(C)BT . Note that A is I × F ,

and it follows that F must be greater than or equal to the

dimension of the column span of X, i.e., the number of linearly

independent columns needed to synthesize any of the JK
columns X(:, j, k) of X. By role symmetry, and upon defining

R1(X) := dim colspan(X) := dim span {X(:, j, k)}∀j,k ,
R2(X) := dim rowspan(X) := dim span {X(i, :, k)}∀i,k ,
R3(X) := dim fiberspan(X) := dim span {X(i, j, :)}∀i,j ,

we have that F ≥ max(R1(X), R2(X), R3(X)). R1(X) is the

mode-1 or mode-A rank of X, and likewise R2(X) and R3(X)
are the mode-2 or mode-B and mode-3 or mode-C ranks of

X, respectively. R1(X) is sometimes called the column rank,

R2(X) the row rank, and R3(X) the fiber or tube rank of X.

The triple (R1(X), R2(X), R3(X)) is called the multilinear
rank of X.

At this point it is worth noting that, for matrices we have

that column rank = row rank = rank, i.e., in our current

notation, for a matrix M (which can be thought of as

an I × J × 1 third-order tensor) it holds that R1(M) =
R2(M) = rank(M), but for nontrivial tensors R1(X), R2(X),
R3(X) and rank(X) are in general different, with rank(X) ≥
max(R1(X), R2(X), R3(X)). Since R1(X) ≤ I , R2(X) ≤
J , R3(X) ≤ K, it follows that rank(M) ≤ min(I, J) for

matrices but rank(X) can be > max(I, J,K) for tensors.

Now, going back to the first way of explaining the

upper bound we derived on tensor rank, it should be

clear that we only need min(R1(X), R2(X)) rank-1 fac-

tors to describe any given frontal slab of the ten-

sor, and so we can describe all slabs with at most

min(R1(X), R2(X))K rank-1 factors; with a little more

thought, it is apparent that min(R1(X), R2(X))R3(X)
is enough. Appealing to role symmetry, it then follows

that F ≤ min(R1(X)R2(X), R2(X)R3(X), R1(X)R3(X)),
where F := rank(X). Dropping the explicit dependence on X
for brevity, we have

max(R1, R2, R3) ≤ F ≤ min(R1R2, R2R3, R1R3).

C. Typical, generic, and border rank of tensors

Consider a 2 × 2 × 2 tensor X whose elements are i.i.d.,

drawn from the standard normal distribution N (0, 1) (X =
randn(2,2,2) in Matlab). The rank of X over the real field,

i.e., when we consider

X =

F∑
f=1

af�bf�cf , af ∈ R
2×1,bf ∈ R

2×1, cf ∈ R
2×1, ∀f

is [22]

rank(X) =

{
2, with probability π

4
3, with probability 1− π

4

This is very different from the matrix case, where

rank(randn(2,2)) = 2 with probability 1. To make matters

more (or less) curious, the rank of the same X = randn(2,2,2)

is in fact 2 with probability 1 when we instead consider

decomposition over the complex field, i.e., using af ∈
C

2×1,bf ∈ C
2×1, cf ∈ C

2×1, ∀f . As another example [22],

for X = randn(3,3,2),

rank(X) =

⎧⎪⎪⎨⎪⎪⎩
3, with probability 1

2
4, with probability 1

2

, over R;

3, with probability 1 , over C.

To understand this behavior, consider the 2× 2× 2 case. We

have two 2 × 2 slabs, S1 := X(:, :, 1) and S2 := X(:, :, 2).
For X to have rank(X) = 2, we must be able to express these

two slabs as

S1 = AD1(C)BT , and S2 = AD2(C)BT ,

for some 2 × 2 real or complex matrices A, B, and C,

depending on whether we decompose over the real or the

complex field. Now, if X = randn(2,2,2), then both S1

and S2 are nonsingular matrices, almost surely (with prob-

ability 1). It follows from the above equations that A, B,

D1(C), and D2(C) must all be nonsingular too. Denoting
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Ã := AD1(C), D := (D1(C))−1D2(C), it follows that

BT = (Ã)−1S1, and substituting in the second equation we

obtain S2 = ÃD(Ã)−1S1, i.e., we obtain the eigen-problem

S2S
−1
1 = ÃD(Ã)−1.

It follows that for rank(X) = 2 over R, the matrix S2S
−1
1

should have two real eigenvalues; but complex conjugate

eigenvalues do arise with positive probability. When they do,

we have rank(X) = 2 over C, but rank(X) ≥ 3 over R – and

it turns out that rank(X) = 3 over R is enough.

We see that the rank of a tensor for decomposition over

R is a random variable that can take more than one value

with positive probability. These values are called typical
ranks. For decomposition over C the situation is different:

rank(randn(2,2,2)) = 2 with probability 1, so there is only

one typical rank. When there is only one typical rank (that

occurs with probability 1 then) we call it generic rank.

All these differences with the usual matrix algebra may be

fascinating – and they don’t end here either. Consider

X = u� u� v + u� v � u+ v � u� u,

where ||u|| = ||v|| = 1, with | < u,v > | �= 1, where < ·, · >
stands for the inner product. This tensor has rank equal to 3,

however it can be arbitrarily well approximated [23] by the

following sequence of rank-two tensors (see also [14]):

Xn = n(u+
1

n
v)� (u+

1

n
v)� (u+

1

n
v)− nu� u� u

= u� u� v + u� v � u+ v � u� u+

+
1

n
v� v� u+

1

n
v� u� v+

1

n
u� v� v+

1

n2
v� v� v,

so

Xn = X+ terms that vanish as n → ∞.

X has rank equal to 3, but border rank equal to 2 [15]. It is

also worth noting that Xn contains two diverging rank-1 com-

ponents that progressively cancel each other approximately,

leading to ever-improving approximation of X. This situation

is actually encountered in practice when fitting tensors of

border rank lower than their rank. Also note that the above

example shows clearly that the low-rank tensor approximation

problem

min
{af ,bf ,cf}F

f=1

∣∣∣∣∣∣
∣∣∣∣∣∣X−

F∑
f=1

af � bf � cf

∣∣∣∣∣∣
∣∣∣∣∣∣
2

F

,

is ill-posed in general, for there is no minimum if we pick

F equal to the border rank of X – the set of tensors of a

given rank is not closed. There are many ways to fix this ill-

posedness, e.g., by adding constraints such as element-wise

non-negativity of af ,bf , cf [24], [25] in cases where X is

element-wise non-negative (and these constraints are physi-

cally meaningful), or orthogonality [26] – any application-

specific constraint that prevents terms from diverging while

approximately canceling each other will do. An alternative

is to add norm regularization to the cost function, such

as λ
(||A||2F + ||B||2F + ||C||2F

)
. This can be interpreted as

TABLE I: Maximum attainable rank over R.
Size Maximum attainable rank over R
I × J × 2 min(I, J) + min(I, J, �max(I, J)/2�)
2× 2× 2 3
3× 3× 3 5

TABLE II: Typical rank over R
Size Typical ranks over R
I × I × 2 {I, I + 1}
I × J × 2, I > J min(I, 2J)
I × J ×K, I > JK JK

TABLE III: Symmetry may affect typical rank.
Size Typical ranks, R Typical ranks, R

partial symmetry no symmetry
I × I × 2 {I, I + 1} {I, I + 1}
9× 3× 3 6 9

coming from a Gaussian prior on the sought parameter matri-

ces; yet, if not properly justified, regularization may produce

artificial results and a false sense of security.

Some useful results on maximal and typical rank for de-

composition over R are summarized in Tables I, II, III – see

[14], [27] for more results of this kind, as well as original

references. Notice that, for a tensor of a given size, there is

always one typical rank over C, which is therefore generic.

For I1 × I2 × · · · × IN tensors, this generic rank is the value



∏N

n=1 In∑N
n=1 In−N+1

� that can be expected from the equations-

versus-unknowns reasoning, except for the so-called defective

cases (i) I1 >
∏N

n=2 In−
∑N

n=2(In−1) (assuming w.l.o.g. that

the first dimension I1 is the largest), (ii) the third-order case

of dimension (4, 4, 3), (iii) the third-order cases of dimension

(2p + 1, 2p + 1, 3), p ∈ N, and (iv) the fourth-order cases of

dimension (p, p, 2, 2), p ∈ N, where it is 1 higher 6. Also

note that the typical rank may change when the tensor is

constrained in some way; e.g., when the frontal slabs are

symmetric, we have the results in Table III, so symmetry

may restrict the typical rank. Also, one may be interested in

symmetric or asymmetric rank decomposition (i.e., symmetric

or asymmetric rank-1 factors) in this case, and therefore

symmetric or regular rank. Consider, for example, a fully

symmetric tensor, i.e., one such that X(i, j, k) = X(i, k, j) =
X(j, i, k) = X(j, k, i) = X(k, i, j) = X(k, j, i), i.e., its value

is invariant to any permutation of the three indices (the concept

readily generalizes to N -way tensors X(ii, · · · , iN )). Then the

symmetric rank of X over C is defined as the minimum R
such that X can be written as X =

∑R
r=1 ar � ar � · · ·� ar,

where the outer product involves N copies of vector ar, and

A := [a1, · · · ,aR] ∈ C
I×R. It has been shown that this

symmetric rank equals 
(I+N−1
N

)
/I� almost surely except in

the defective cases (N, I) = (3, 5), (4, 3), (4, 4), (4, 5), where

it is 1 higher [29]. Taking N = 3 as a special case, this

formula gives
(I+1)(I+2)

6 . We also remark that constraints such

as nonnegativity of a factor matrix can strongly affect rank.

Given a particular tensor X, determining rank(X) is NP-

hard [30]. There is a well-known example of a 9 × 9 × 9

6In fact this has been verified for R ≤ 55, with the probability that a
defective case has been overlooked less than 10−55, the limitations being a
matter of computing power [28].
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tensor7 whose rank (border rank) has been bounded between

19 and 23 (14 and 21, resp.), but has not been pinned down yet.

At this point, the reader may rightfully wonder whether this

is an issue in practical applications of tensor decomposition,

or merely a mathematical curiosity? The answer is not black-

and-white, but rather nuanced: In most applications, one is

really interested in fitting a model that has the “essential”

or “meaningful” number of components that we usually call

the (useful signal) rank, which is usually much less than the

actual rank of the tensor that we observe, due to noise and

other imperfections. Determining this rank is challenging, even

in the matrix case. There exist heuristics and a few more

disciplined approaches that can help, but, at the end of the

day, the process generally involves some trial-and-error.
An exception to the above is certain applications where

the tensor actually models a mathematical object (e.g., a

multilinear map) rather than “data”. A good example of

this is Strassen’s matrix multiplication tensor – see the in-

sert entitled Tensors as bilinear operators. A vector-valued

(multiple-output) bilinear map can be represented as a third-

order tensor, a vector-valued trilinear map as a fourth-order

tensor, etc. When working with tensors that represent such

maps, one is usually interested in exact factorization, and

thus the mathematical rank of the tensor. The border rank

is also of interest in this context, when the objective is to

obtain a very accurate approximation (say, to within machine

precision) of the given map. There are other applications (such

as factorization machines, to be discussed later) where one is

forced to approximate a general multilinear map in a possibly

crude way, but then the number of components is determined

by other means, not directly related to notions of rank.
Consider again the three matrix views of a given tensor X in

(3), (2), (1). Looking at X1 in (1), note that if (C�B) is full

column rank and so is A, then rank(X1) = F = rank(X).
Hence this matrix view of X is rank-revealing. For this to

happen it is necessary (but not sufficient) that JK ≥ F ,

and I ≥ F , so F has to be small: F ≤ min(I, JK).
Appealing to role symmetry of the three modes, it follows

that F ≤ max(min(I, JK),min(J, IK),min(K, IJ)) is nec-

essary to have a rank-revealing matricization of the tensor.

However, we know that the (perhaps unattainable) upper

bound on F = rank(X) is F ≤ min(IJ, JK, IK), hence

for matricization to reveal rank, it must be that the rank is

really small relative to the upper bound. More generally, what

holds for sure, as we have seen, is that F = rank(X) ≥
max(rank(X1), rank(X2), rank(X3)).

Before we move on, let us extend what we have done so far

to the case of N -way tensors. Let us start with 4-way tensors,

whose rank decomposition can be written as

X(i, j, k, �) =
F∑

f=1

af (i)bf (j)cf (k)ef (�), ∀

⎧⎪⎪⎨⎪⎪⎩
i ∈ {1, · · · , I}
j ∈ {1, · · · , J}
k ∈ {1, · · · ,K}
� ∈ {1, · · · , L}

or, equivalently X =

F∑
f=1

af � bf � cf � ef .

7See the insert entitled Tensors as bilinear operators.

Tensors as bilinear operators: When multiplying two 2×2
matrices M1, M2, every element of the 2 × 2 result P =
M1M2 is a bilinear form vec(M1)

TXkvec(M2), where

Xk is 4 × 4, holding the coefficients that produce the k-

th element of vec(P), k ∈ {1, 2, 3, 4}. Collecting the slabs

{Xk}4k=1 into a 4 × 4 × 4 tensor X, matrix multiplication

can be implemented by means of evaluating 4 bilinear forms

involving the 4 frontal slabs of X. Now suppose that X
admits a rank decomposition involving matrices A, B, C (all

4 × F in this case). Then any element of P can be written

as vec(M1)
TADk(C)BT vec(M2). Notice that BT vec(M2)

can be computed using F inner products, and the same is true

for vec(M1)
TA. If the elements of A, B, C take values in

{0,±1} (as it turns out, this is true for the “naive” as well as

the minimal decomposition of X), then these inner products

require no multiplication – only selection, addition, subtrac-

tion. Letting uT := vec(M1)
TA and v := BT vec(M2), it

remains to compute uTDk(C)v =
∑F

f=1 u(f)v(f)C(k, f),
∀k ∈ {1, 2, 3, 4}. This entails F multiplications to compute

the products {u(f)v(f)}Ff=1 – the rest is all selections,

additions, subtractions if C takes values in {0,±1}. Thus F
multiplications suffice to multiply two 2×2 matrices – and it

so happens, that the rank of Strassen’s 4×4×4 tensor is 7, so

F = 7 suffices. Contrast this to the “naive” approach which

entails F = 8 multiplications (or, a “naive” decomposition

of Strassen’s tensor involving A, B, C all of size 4× 8).

Upon defining A := [a1, · · · ,aF ], B := [b1, · · · ,bF ], C :=
[c1, · · · , cF ], E := [e1, · · · , eF ], we may also write

X(i, j, k, �) =
F∑

f=1

A(i, f)B(j, f)C(k, f)E(�, f),

and we sometimes also use X(i, j, k, �) =∑F
f=1 ai,f bj,fck,fe�,f . Now consider X(:, :, :, 1), which

is a third-order tensor. Its elements are given by

X(i, j, k, 1) =

F∑
f=1

ai,f bj,fck,fe1,f ,

where we notice that the ‘weight’ e1,f is independent of i, j, k,

it only depends on f , so we would normally absorb it in, say,

ai,f , if we only had to deal with X(:, :, :, 1) – but here we

don’t, because we want to model X as a whole. Towards this

end, let us vectorize X(:, :, :, 1) into an IJK × 1 vector

vec (vec (X(:, :, :, 1))) = (C�B�A)(E(1, :))T ,

where the result on the right should be contrasted with

(C � B � A)1, which would have been the result had we

absorbed e1,f in ai,f . Stacking one next to each other the vec-

tors corresponding to X(:, :, :, 1), X(:, :, :, 2), · · · , X(:, :, :, L),
we obtain (C�B�A)ET ; and after one more vec(·) we get

(E�C�B�A)1.

It is also easy to see that, if we fix the last two indices and

vary the first two, we get

X(:, :, k, �) = ADk(C)D�(E)BT ,
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Multiplying two complex numbers: Another interesting

example involves the multiplication of two complex numbers

– each represented as a 2 × 1 vector comprising its real

and imaginary part. Let j :=
√−1, x = xr + jxi ↔

x := [xr xi]
T , y = yr + jyi ↔ y := [yr yi]

T . Then

xy = (xryr − xiyi) + j(xryi + xryr) =: zr + jzi. It appears

that 4 real multiplications are needed to compute the result;

but in fact 3 are enough. To see this, note that the 2× 2× 2
multiplication tensor in this case has frontal slabs

X(:, :, 1) =

[
1 0
0 −1

]
, X(:, :, 2) =

[
0 1
1 0

]
,

whose rank is at most 3, because[
1 0
0 −1

]
=

[
1
0

] [
1
0

]T
−
[

0
1

] [
0
1

]T
,

and[
0 1
1 0

]
=

[
1
1

] [
1
1

]T
−
[

1
0

] [
1
0

]T
−
[

0
1

] [
0
1

]T
,

Thus taking

A = B =

[
1 0 1
0 1 1

]
, C =

[
1 −1 0
−1 −1 1

]
,

we only need to compute p1 = xryr, p2 = xiyi, p3 = (xr +
xi)(yr + yi), and then zr = p1 − p2, zi = p3 − p1 − p2. Of

course, we did not need tensors to invent these computation

schedules – but tensors can provide a way of obtaining them.

so that

vec (X(:, :, k, �)) = (B�A)(C(k, :) ∗E(�, :))T ,

where ∗ stands for the Hadamard (element-wise) matrix prod-

uct. If we now stack these vectors one next to each other,

we obtain the following “balanced” matricization8 of the 4-th

order tensor X:

Xb = (B�A)(E�C)T .

This is interesting because the inner dimension is F , so

if B � A and E � C are both full column rank, then

F = rank(Xb), i.e., the matricization Xb is rank-revealing
in this case. Note that full column rank of B�A and E�C
requires F ≤ min(IJ,KL), which seems to be a more relaxed

condition than in the three-way case. The catch is that, for 4-

way tensors, the corresponding upper bound on tensor rank

(obtained in the same manner as for third-order tensors) is

F ≤ min(IJK, IJL, IKL, JKL) – so the upper bound on

tensor rank increases as well. Note that the boundary where

matricization can reveal tensor rank remains off by one order

of magnitude relative to the upper bound on rank, when

I = J = K = L. In short: matricization can generally reveal

the tensor rank in low-rank cases only.

Note that once we have understood what happens with 3-

way and 4-way tensors, generalizing to N -way tensors for any

8An alternative way to obtain this is to start from (E � C � B � A)1
= ((E�C)� (B�A))1 = vectorization of (B�A)(E�X)T , by the
vectorization property of �.

integer N ≥ 3 is easy. For a general N -way tensor, we can

write it in scalar form as

X(i1, · · · , iN ) =
F∑

f=1

a
(1)
f (i1) · · ·a(N)

f (iN ) =
F∑

f=1

a
(1)
i1,f

· · · a(N)
iN ,f ,

and in (combinatorially!) many different ways, including

XN = (AN−1�· · ·�A1)A
T
N → vec(XN ) = (AN�· · ·�A1)1.

We sometimes also use the shorthand vec(XN ) =(�1
n=NAn

)
1, where vec(·) is now a compound operator, and

the order of vectorization only affects the ordering of the factor

matrices in the Khatri–Rao product.

IV. UNIQUENESS, DEMYSTIFIED

We have already emphasized what is perhaps the most

significant advantage of low-rank decomposition of third-

and higher-order tensors versus low-rank decomposition of

matrices (second-order tensors): namely, the former is es-

sentially unique under mild conditions, whereas the latter is

never essentially unique, unless the rank is equal to one, or

else we impose additional constraints on the factor matrices.

The reason why uniqueness happens for tensors but not for

matrices may seem like a bit of a mystery at the beginning.

The purpose of this section is to shed light in this direction, by

assuming more stringent conditions than necessary to enable

simple and insightful proofs. First, a concise definition of

essential uniqueness.

Definition 1. Given a tensor X of rank F , we say that its CPD
is essentially unique if the F rank-1 terms in its decomposition
(the outer products or “chicken feet”) in Fig. 2 are unique, i.e.,
there is no other way to decompose X for the given number
of terms. Note that we can of course permute these terms
without changing their sum, hence there exists an inherently
unresolvable permutation ambiguity in the rank-1 tensors. If
X = �A,B,C�, with A : I×F , B : J×F , and C : K×F ,
then essential uniqueness means that A, B, and C are unique
up to a common permutation and scaling / counter-scaling of
columns, meaning that if X =

�
Ā, B̄, C̄

�
, for some Ā : I×F ,

B̄ : J × F , and C̄ : K × F , then there exists a permutation
matrix Π and diagonal scaling matrices Λ1,Λ2,Λ3 such that

Ā = AΠΛ1, B̄ = BΠΛ2, C̄ = CΠΛ3, Λ1Λ2Λ3 = I.

Remark 1. Note that if we under-estimate the true rank
F = rank(X), it is impossible to fully decompose the given
tensor using R < F terms by definition. If we use R > F ,
uniqueness cannot hold unless we place conditions on A, B,
C. In particular, for uniqueness it is necessary that each of
the matrices A�B, B�C and C�A is full column rank.
Indeed, if for instance aR⊗bR =

∑R−1
r=1 drar⊗br, then X =�

A(:, 1 : R− 1),B(:, 1 : R− 1),C(:, 1 : R− 1) + cRd
T
�

,
with d = [d1, · · · , dR−1]

T , is an alternative decomposition
that involves only R − 1 rank-1 terms, i.e. the number of
rank-1 terms has been overestimated.

We begin with the simplest possible line of argument.

Consider an I × J × 2 tensor X of rank F ≤ min(I, J).
We know that the maximal rank of an I × J × 2 tensor over
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R is min(I, J) + min(I, J, �max(I, J)/2�), and typical rank

is min(I, 2J) when I > J , or {I, I + 1} when I = J (see

Tables I, II) – so here we purposefully restrict ourselves to

low-rank tensors (over C the argument is more general).

Let us look at the two frontal slabs of X. Since rank(X) =
F , it follows that

X(1) := X(:, :, 1) = AD1(C)BT ,

X(2) := X(:, :, 2) = AD2(C)BT ,

where A, B, C are I × F , J × F , and 2 × F , respectively.

Let us assume that the multilinear rank of X is (F, F, 2),
which implies that rank (A) = rank (B) = F . Now define the

pseudo-inverse E := (BT )†. It is clear that the columns of E
are generalized eigenvectors of the matrix pencil (X(1),X(2)):

X(1)ef = c1,faf , X(2)ef = c2,faf .

(In the case I = J and assuming that X(2) is full rank,

the Generalized EVD (GEVD) is algebraically equivalent

with the basic EVD X(2)−1

X(1) = B−TDBT where D :=
diag(c1,1/c2,1, · · · , c1,F /c2,F ); however, there are numerical

differences.) For the moment we assume that the generalized

eigenvalues are distinct, i.e. no two columns of C are propor-

tional. There is freedom to scale the generalized eigenvectors

(they remain generalized eigenvectors), and obviously one

cannot recover the order of the columns of E. This means that

there is permutation and scaling ambiguity in recovering E.

That is, what we do recover is actually Ẽ = EΠΛ, where Π is

a permutation matrix and Λ is a nonsingular diagonal scaling

matrix. If we use Ẽ to recover B, we will in fact recover

(ẼT )† = BΠΛ−1 – that is, B up to the same column permu-

tation and scaling. It is now easy to see that we can recover A
and C by going back to the original equations for X(1) and

X(2) and multiplying from the right by Ẽ = [ẽ1, · · · , ẽF ].
Indeed, since ẽf̃ = λf̃ ,f̃ef for some f , we obtain per column

a rank-1 matrix
[
X(1)ẽf̃ ,X

(2)ẽf̃

]
= λf̃ ,f̃afc

T
f , from which

the corresponding column of A and C can be recovered.

The basic idea behind this type of EVD-based uniqueness

proof has been rediscovered many times under different dis-

guises and application areas. We refer the reader to Harshman

(who also credits Jenkins) [31], [32]. The main idea is similar

to a well-known parameter estimation technique in signal

processing, known as ESPRIT [33]. A detailed and streamlined

EVD proof that also works when I �= J and F < min(I, J)
and is constructive (suitable for implementation) can be found

in the supplementary material. That proof owes much to ten

Berge [34] for the random slab mixing argument.

Remark 2. Note that if we start by assuming that rank(X) =
F over R, then, by definition, all the matrices involved will be
real, and the eigenvalues in D will also be real. If rank(X) =
F over C, then whether D is real or complex is not an issue.

Note that there are F linearly independent eigenvectors by
construction under our working assumptions. Next, if two

or more of the generalized eigenvalues are identical, then

linear combinations of the corresponding eigenvectors are also

eigenvectors, corresponding to the same generalized eigen-

value. Hence distinct generalized eigenvalues are necessary

for uniqueness.9 The generalized eigenvalues are distinct if

and only if any two columns of C are linearly independent

– in which case we say that C has Kruskal rank ≥ 2. The

definition of Kruskal rank is as follows.

Definition 2. The Kruskal rank kA of an I×F matrix A is the
largest integer k such that any k columns of A are linearly
independent. Clearly, kA ≤ rA := rank(A) ≤ min(I, F ).
Note that kA = sA−1 := spark(A)−1, where spark(A) is the
minimum number of linearly dependent columns of A (when
this is ≤ F ). Spark is a familiar notion in the compressed
sensing literature, but Kruskal rank was defined earlier.

We will see that the notion of Kruskal rank plays an

important role in uniqueness results in our context, notably in

what is widely known as Kruskal’s result (in fact, a “common

denominator” implied by a number of results that Kruskal

has proven in his landmark paper [35]). Before that, let us

summarize the result we have just obtained.

Theorem 1. Given X = �A,B,C�, with A : I×F , B : J×
F , and C : 2×F , if F > 1 it is necessary for uniqueness of A,
B that kC = 2. If, in addition rA = rB = F , then rank(X) =
F and the decomposition of X is essentially unique.

For tensors that consist of K ≥ 2 slices, one can consider

a pencil of two random slice mixtures and infer the following

result from Theorem 1.

Theorem 2. Given X = �A,B,C�, with A : I × F ,
B : J × F , and C : K × F , if F > 1 it is necessary for
uniqueness of A, B that kC ≥ 2. If, in addition rA = rB = F ,
then rank(X) = F and the decomposition of X is essentially
unique.

A probabilistic version of Theorem 2 goes as follows.

Theorem 3. Given X = �A,B,C�, with A : I×F , B : J×
F , and C : K × F , if I ≥ F , J ≥ F and K ≥ 2, then
rank(X) = F and the decomposition of X in terms of A,
B, and C is essentially unique, almost surely (meaning that
it is essentially unique for all X = �A,B,C� except for a
set of measure zero with respect to the Lebesgue measure in
R

(I+J+K−2)F or C
(I+J+K−2)F ).

Now let us relax our assumptions and require that only

one of the loading matrices is full column rank, instead of

two. After some reflection, the matricization X(JI×K) :=
(A�B)CT yields the following condition, which is both

necessary and sufficient.

Theorem 4. [36] Given X = �A,B,C�, with A : I × F ,
B : J × F , and C : K × F , and assuming rC = F ,
it holds that the decomposition X = �A,B,C� is essentially
unique ⇐⇒ nontrivial linear combinations of columns of A�
B cannot be written as ⊗ product of two vectors.

Despite its conceptual simplicity and appeal, the above

condition is hard to check. In [36] it is shown that it is

possible to recast this condition as an equivalent criterion

9Do note however that, even in this case, uniqueness breaks down only
partially, as eigenvectors corresponding to other, distinct eigenvalues are still
unique up to scaling.
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on the solutions of a system of quadratic equations – which

is also hard to check, but will serve as a stepping stone to

easier conditions and even generalizations of the EVD-based

computation. Let Mk(A) denote the
(
I
k

)×(Fk) k-th compound

matrix containing all k × k minors of A, e.g., for

A =

⎡⎣ a1 1 0 0
a2 0 1 0
a3 0 0 1

⎤⎦
M2(A) =

⎡⎣ −a2 a1 0 1 0 0
−a3 0 a1 0 1 0

0 −a3 a2 0 0 1

⎤⎦ .

Starting from a vector d = [d1, · · · , dF ]T ∈
C

F , let vk(d) consistently denote

[d1d2 · · · dk, d1d2 · · · dk−1dk+1, · · · , dF−k+1dF−k+2 · · · dF ]T ∈
C(

F
k). Theorem 4 can now be expressed as follows.

Theorem 5. [36] Given X = �A,B,C�, with A : I × F ,
B : J ×F , and C : K ×F , and assuming rC = F , it holds
that the decomposition

X = �A,B,C� is essentially unique ⇐⇒
(M2(B)�M2(A))v2(d) = 0

implies that v2(d) = [d1d2, d1d3, · · · , dF−1dF ]
T
= 0,

i.e., at most one entry ofdis nonzero.

The size of M2(B)�M2(A) is
(
I
2

)(
J
2

)× (F2). A sufficient

condition that can be checked with basic linear algebra is

readily obtained by ignoring the structure of v2(d).

Theorem 6. [36], [37] If rC = F , and rM2(B)�M2(A) =(
F
2

)
, then rank(X) = F and the decomposition of X =�A,B,C� is essentially unique.

The generic version of Theorems 4 and 5 has been obtained

from an entirely different (algebraic geometry) point of view:

Theorem 7. [38]–[40] Given X = �A,B,C�, with A : I×
F , B : J×F , and C : K×F , let K ≥ F and min(I, J) ≥ 3.
Then rank(X) = F and the decomposition of X is essentially
unique, almost surely, if and only if (I − 1)(J − 1) ≥ F .

The next theorem is the generic version of Theorem 6; the

second inequality implies that M2(B)�M2(A) does not have

more columns than rows.

Theorem 8. Given X = �A,B,C�, with A : I×F , B : J×
F , and C : K × F , if K ≥ F and I(I − 1)J(J − 1) ≥
2F (F − 1), then rank(X) = F and the decomposition of X
is essentially unique, almost surely.

Note that (I − 1)(J − 1) ≥ F ⇐⇒ IJ − I − J +1 ≥ F ⇒
IJ ≥ F − 1+ I + J ⇒ IJ ≥ F − 1, and multiplying the first

and the last inequality yields I(I−1)J(J−1) ≥ F (F−1). So

Theorem 7 is at least a factor of 2 more relaxed than Theorem

8. Put differently, ignoring the structure of v2(d) makes us

lose about a factor of 2 generically.
On the other hand, Theorem 6 admits a remarkable con-

structive interpretation. Consider any rank-revealing decompo-

sition, such as a QR-factorization or an SVD, of X(JI×K) =

EFT , involving a JI×F matrix E and a K×F matrix F that

both are full column rank. (At this point, recall that full column

rank of A�B is necessary for uniqueness, and that C is full

column rank by assumption.) We are interested in finding an

F × F (invertible) basis transformation matrix G such that

A � B = EG and C = FG−T . It turns out that, under

the conditions in Theorem 6 and through the computation of

second compound matrices, an F × F × F auxiliary tensor

Y can be derived from the given tensor X, admitting the

CPD Y =
�
G̃, G̃,H

�
, in which G̃ equals G up to column-

wise scaling and permutation, and in which the F ×F matrix

H is nonsingular [37]. As the three loading matrices are full

column rank, uniqueness of the auxiliary CPD is guaranteed

by Theorem 2, and it can be computed by means of an EVD.

Through a more sophisticated derivation of an auxiliary tensor,

[41] attempts to regain the “factor of 2” above and extend

the result up to the necessary and sufficient generic bound in

Theorem 7; that the latter bound is indeed reached has been

verified numerically up to F = 24.
Several results have been extended to situations where

none of the loading matrices is full column rank, using m-

th compound matrices (m > 2). For instance, the following

theorem generalizes Theorem 6:

Theorem 9. [42], [43] Given X = �A,B,C�, with
A : I×F , B : J×F , and C : K×F . Let mC = F−kC+2.
If max(min(kA, kB−1),min(kA−1, kB))+kC ≥ F +1 and
MmC

(A)�MmC
(B) has full column rank, then rank(X) =

F and the decomposition X = �A,B,C� is essentially
unique.

(To see that Theorem 9 reduces to Theorem 6 when

rC = F , note that rC = F implies kC = F and recall that

min(kA, kB) > 1 is necessary for uniqueness.) Under the

conditions in Theorem 9 computation of the CPD can again

be reduced to a GEVD [43].
It can be shown [42], [43] that Theorem 9 implies the

next theorem, which is the most well-known result covered by

Kruskal; this includes the possibility of reduction to GEVD.

Theorem 10. [35] Given X = �A,B,C�, with A : I × F ,
B : J × F , and C : K × F , if kA + kB + kC ≥ 2F + 2,
then rank(X) = F and the decomposition of X is essentially
unique.

Note that Theorem 10 is symmetric in A, B, C, while in

Theorem 9 the role of C is different from that of A and

B. Kruskal’s condition is sharp, in the sense that there exist

decompositions that are not unique as soon as F goes beyond

the bound [44]. This does not mean that uniqueness is impos-

sible beyond Kruskal’s bound – as indicated, Theorem 9 also

covers other cases. (Compare the generic version of Kruskal’s

condition, min(I, F ) + min(J, F ) + min(K,F ) ≥ 2F + 2,

with Theorem 7, for instance.)
Kruskal’s original proof is beyond the scope of this

overview paper; instead, we refer the reader to [45] for a

compact version that uses only matrix algebra, and to the

supplementary material for a relatively simple proof of an

intermediate result which still conveys the flavor of Kruskal’s

derivation.



12

With respect to generic conditions, one could wonder

whether a CPD is not unique almost surely for any value

of F strictly less than the generic rank, see the equations-

versus-unknowns discussion in Section III. For symmetric

decompositions this has indeed been proved, with the ex-

ceptions (N, I;F ) = (6, 3; 9), (4, 4; 9), (3, 6; 9) where there

are two decompositions generically [46]. For unsymmetric

decompositions it has been verified for tensors up to 15000

entries (larger tensors can be analyzed with a larger computa-

tional effort) that the only exceptions are (I1, · · · , IN ;F ) =
(4, 4, 3; 5), (4, 4, 4; 6), (6, 6, 3; 8), (p, p, 2, 2; 2p−1) for p ∈ N,

(2, 2, 2, 2, 2; 5), and the so-called unbalanced case I1 > α,

F ≥ α, with α =
∏N

n=2 In −∑N
n=2(In − 1) [47].

Note that in the above we assumed that the factor matrices

are unconstrained. (Partial) symmetry can be integrated in the

deterministic conditions by substituting for instance A = B.

(Partial) symmetry does change the generic conditions, as the

number of equations / number of parameters ratio is affected,

see [39] and references therein for variants. For the partial

Hermitian symmetry A = B∗ we can do better by constructing

the extended I × I × 2K tensor X(ext) via x
(ext)
i,j,k = xi,j,k for

k ≤ K and x
(ext)
i,j,k = x∗

j,i,k for K + 1 ≤ k ≤ 2K. We have

X(ext) =
�
A,A∗,C(ext)

�
, with C(ext) =

[
CT ,CH

]T
. Since

obviously rC(ext) ≥ rC and kC(ext) ≥ kC, uniqueness is easier

to establish for X(ext) than for X [48]. By exploiting orthog-

onality, some deterministic conditions can be relaxed as well

[49]. For a thorough study of implications of nonnegativity,

we refer to [25].

Summarizing, there exist several types of uniqueness con-

ditions. First, there are probabilistic conditions that indicate

whether it is reasonable to expect uniqueness for a certain

number of terms, given the size of the tensor. Second, there

are deterministic conditions that allow one to establish unique-

ness for a particular decomposition – this is useful for an

a posteriori analysis of the uniqueness of results obtained

by a decomposition algorithm. There also exist deterministic

conditions under which the decomposition can actually be

computed using only conventional linear algebra (EVD or

GEVD), at least under noise-free conditions. In the case of

(mildly) noisy data, such algebraic algorithms can provide a

good starting value for optimization-based algorithms (which

will be discussed in Section VII), i.e. the algebraic solution is

refined in an optimization step. Further, the conditions can be

affected by constraints. While in the matrix case constraints

can make a rank decomposition unique that otherwise is not

unique, for tensors the situation is rather that constraints affect

the range of values of F for which uniqueness holds.

There exist many more uniqueness results that we didn’t

touch upon in this overview, but the ones that we did present

give a good sense of what is available and what one can expect.

In closing this section, we note that many (but not all) of

the above results have been extended to the case of higher-

order (order N > 3) tensors. For example, the following result

generalizes Kruskal’s theorem to tensors of arbitrary order:

Theorem 11. [50] Given X = �A1, . . . ,AN �, with
An : In × F , if

∑N
n=1 kAn

≥ 2F + N − 1, then the

Fig. 3: Diagonal tensor SVD?

decomposition of X in terms of {An}Nn=1 is essentially unique.

This condition is sharp in the same sense as the N = 3
version is sharp [44]. The starting point for proving Theorem

11 is that a fourth-order tensor of rank F can be written

in third-order form as X[1,2;3;4] = �A1 �A2,A3,A4� =�
A[1,2],A3,A4

�
– i.e., can be viewed as a third-order tensor

with a specially structured mode loading matrix A[1,2] :=
A1 � A2. Therefore, Kruskal’s third-order result can be

applied, and what matters is the k-rank of the Khatri–Rao

product A1 � A2 – see property 2 in the supplementary

material, and [50] for the full proof.

V. THE TUCKER MODEL AND MULTILINEAR SINGULAR

VALUE DECOMPOSITION

A. Tucker and CPD

Any I × J matrix X can be decomposed via SVD as X =
UΣVT , where UTU = I = UUT , VTV = I = VVT ,

Σ(i, j) ≥ 0, Σ(i, j) > 0 only when j = i and i ≤ rX, and

Σ(i, i) ≥ Σ(i+ 1, i+ 1), ∀i. With U := [u1, · · · ,uI ], V :=
[v1, · · · ,vJ ], and σf := Σ(f, f), we can thus write X = U(:

, 1 : F )Σ(1 : F, 1 : F )(V(:, 1 : F ))T =
∑F

f=1 σfufv
T
f .

The question here is whether we can generalize the SVD to

tensors, and if there is a way of doing so that retains the many

beautiful properties of matrix SVD. The natural generalization

would be to employ another matrix, of size K × K, call it

W, such that WTW = I = WWT , and a nonnegative

I × J × K core tensor Σ such that Σ(i, j, k) > 0 only

when k = j = i – see the schematic illustration in Fig. 3.

Is it possible to decompose an arbitrary tensor in this way? A

back-of-the-envelop calculation shows that the answer is no.

Even disregarding the orthogonality constraints, the degrees

of freedom in such a decomposition would be less10 than

I2 + J2 +K2 +min(I, J,K), which is in general < IJK –

the number of (nonlinear) equality constraints. [Note that, for

matrices, I2 + J2 + min(I, J) > I2 + J2 > IJ , always.] A

more formal way to look at this is that the model depicted in

Fig. 3 can be written as

σ1u1�v1�w1+σ2u2�v2�w2+ · · ·+σmum�vm�wm,

where m := min(I, J,K). The above is a tensor of rank

at most min(I, J,K), but we know that tensor rank can be

(much) higher than that. Hence we certainly have to give up

diagonality. Consider instead a full (possibly dense, but ideally

sparse) core tensor G, as illustrated in Fig. 4. An element-

10Since the model exhibits scaling/counter-scaling invariances.
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Fig. 4: The Tucker model

Fig. 5: Element-wise view of the Tucker model

wise interpretation of the decomposition in Fig. 4 is shown in

Fig. 5. From Fig. 5, we write

X(i, j, k) =
I∑

�=1

J∑
m=1

K∑
n=1

G(�,m, n)U(i, �)V(j,m)W(k, n),

or, equivalently,

X =
I∑

�=1

J∑
m=1

K∑
n=1

G(�,m, n)U(:, �)�V(:,m)�W(:, n),

or X =
I∑

�=1

J∑
m=1

K∑
n=1

G(�,m, n)u� � vm �wn, (4)

where u� := U(:, �) and likewise for the vm, wn. Note that

each column of U interacts with every column of V and

every column of W in this decomposition, and the strength

of this interaction is encoded in the corresponding element

of G. This is different from the rank decomposition model

(CPD) we were discussing until this section, which only allows

interactions between corresponding columns of A,B,C, i.e.,

the only outer products that can appear in the CPD are of

type af � bf � cf . On the other hand, we emphasize that

the Tucker model in (4) also allows “mixed” products of non-

corresponding columns of U, V, W. Note that any tensor X
can be written in Tucker form (4), and a trivial way of doing

so is to take U = II×I , V = IJ×J , W = IK×K , and G = X.

Hence we may seek a possibly sparse G, which could help

reveal the underlying “essential” interactions between triples

of columns of U, V, W. This is sometimes useful when one

is interested in quasi-CPD models. The main interest in Tucker

though is for finding subspaces and for tensor approximation

purposes.

From the above discussion, it may appear that CPD is

a special case of the Tucker model, which appears when

G(�,m, n) = 0 for all �,m, n except possibly for � = m = n.

However, when U, V, W are all square, such a restricted

diagonal Tucker form can only model tensors up to rank

min(I, J,K). If we allow “fat” (and therefore, clearly, non-

orthogonal) U, V, W in Tucker though, it is possible to think

of CPD as a special case of such a “blown-up” non-orthogonal

Tucker model.

By a similar token, if we allow column repetition in A, B,

C for CPD, i.e., every column of A is repeated JK times, and

we call the result U; every column of B is repeated IK times,

and we call the result V; and every column of C is repeated

IJ times, and we call the result W, then it is possible to

think of non-orthogonal Tucker as a special case of CPD –

but notice that, due to column repetitions, this particular CPD

model has k-ranks equal to one in all modes, and is therefore

highly non-unique.

In a nutshell, both CPD and Tucker are sum-of-outer-

products models, and one can argue that the most general

form of one contains the other. What distinguishes the two

is uniqueness, which is related but not tantamount to model

parsimony (“minimality”); and modes of usage, which are

quite different for the two models, as we will see.

B. MLSVD and approximation

By now the reader must have developed some familiarity

with vectorization, and it should be clear that the Tucker model

can be equivalently written in various useful ways, such as in

vector form as

x := vec(X) = (U⊗V ⊗W)g,

where g := vec(G), and the order of vectorization of X
only affects the order in which the factor matrices U, V,

W appear in the Kronecker product chain, and of course

the corresponding permutation of the elements of g. From

the properties of the Kronecker product, we know that the

expression above is the result of vectorization of matrix

X1 = (V ⊗W)G1U
T

where the KJ × I matrix X1 contains all rows (mode-1

vectors) of tensor X, and the KJ × I matrix G1 is a likewise

reshaped form of the core tensor G. From this expression it is

evident that we can linearly transform the columns of U and

absorb the inverse transformation in G1, i.e.,

G1U
T = G1M

−T (UM)
T
,

from which it follows immediately that the Tucker model is

not unique. Recalling that X1 contains all rows of tensor X,

and letting r1 denote the row-rank (mode-1 rank) of X, it is

clear that, without loss of generality, we can pick U to be an

I × r1 orthonormal basis of the row-span of X, and absorb

the linear transformation in G, which is thereby reduced from

I ×J ×K to r1 ×J ×K. Continuing in this fashion with the

other two modes, it follows that, without loss of generality,

the Tucker model can be written as

x := vec(X) = (Ur1 ⊗Vr2 ⊗Wr3)g,

where Ur1 is I × r1, Vr2 is J × r2, Wr3 is K × r3,

and g := vec(G) is r1r2r3 × 1 – the vectorization of the

r1 × r2 × r3 reduced-size core tensor G. This compact-size

Tucker model is depicted in Fig. 6. Henceforth we drop the
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Fig. 6: Compact (reduced) Tucker model: r1, r2, r3 are the

mode (row, column, fiber, resp.) ranks of X.

subscripts from Ur1 , Vr2 , Wr3 for brevity – the meaning will

be clear from context. The Tucker model with orthonormal

U, V, W chosen as the right singular vectors of the matrix

unfoldings X1, X2, X3, respectively, is also known as the

multilinear SVD (MLSVD) (earlier called the higher-order

SVD: HOSVD) [51], and it has several interesting and useful

properties, as we will soon see.

It is easy to see that orthonormality of the columns of Ur1 ,

Vr2 , Wr3 implies orthonormality of the columns of their

Kronecker product. This is because (Ur1 ⊗ Vr2)
T (Ur1 ⊗

Vr2) = (UT
r1⊗VT

r2)(Ur1⊗Vr2) = (UT
r1Ur1)⊗(VT

r2Vr2) =
I ⊗ I = I. Recall that x1 ⊥ x2 ⇐⇒ xT

1 x2 = 0 =⇒
||x1 + x2||22 = ||x1||22 + ||x2||22. It follows that

||X||2F :=
∑

∀ i,j,k

|X(i, j, k)|2 = ||x||22 = ||g||22 = ||G||2F ,

where x = vec(X), and g = vec(G). It also follows that,

if we drop certain outer products from the decomposition

x = (U⊗V ⊗W)g, or equivalently from (4), i.e., set the

corresponding core elements to zero, then, by orthonormality∣∣∣∣∣∣X− X̂
∣∣∣∣∣∣2
F
=

∑
(�,m,n)∈D

|G(�,m, n)|2,

where D is the set of dropped core element indices. So, if

we order the elements of G in order of decreasing magnitude,

and discard the “tail”, then X̂ will be close to X, and we can

quantify the error without having to reconstruct X, take the

difference and evaluate the norm.

In trying to generalize the matrix SVD, we are tempted

to consider dropping entire columns of U, V, W. Notice

that, for matrix SVD, this corresponds to zeroing out small

singular values on the diagonal of matrix Σ, and per the

Eckart–Young theorem, it is optimal in that it yields the best

low-rank approximation of the given matrix. Can we do the

same for higher-order tensors?

First note that we can permute the slabs of G in any

direction, and permute the corresponding columns of U, V,

W accordingly – this is evident from (4). In this way, we may

bring the frontal slab with the highest energy ||G(:, :, n)||2F
up front, then the one with second highest energy, etc. Next,

we can likewise order the lateral slabs of the core without
changing the energy of the frontal slabs, and so on – and in

this way, we can compact the energy of the core on its upper-

left-front corner. We can then truncate the core, keeping only

its upper-left-front dominant part of size r
′
1 × r

′
2 × r

′
3, with

r
′
1 ≤ r1, r

′
2 ≤ r2, and r

′
3 ≤ r3. The resulting approximation

error can be readily bounded as∣∣∣∣∣∣X− X̂
∣∣∣∣∣∣2
F

≤
r1∑

�=r
′
1+1

||G(�, :, :)||2F +

r2∑
m=r

′
2+1

||G(:,m, :)||2F

+

r3∑
n=r

′
3+1

||G(:, :, n)||2F ,

where we use ≤ as opposed to = because dropped elements

may be counted up to three times (in particular, the lower-

right-back ones). One can of course compute the exact error

of such a truncation strategy, but this involves instantiating

X− X̂.

Either way, such truncation in general does not yield the best

approximation of X for the given (r
′
1, r

′
2, r

′
3). That is, there is

no exact equivalent of the Eckart–Young theorem for tensors

of order higher than two [52] – in fact, as we will see later, the

best low multilinear rank approximation problem for tensors is

NP-hard. Despite this “bummer”, much of the beauty of matrix

SVD remains in MLSVD, as explained next. In particular, the

slabs of the core array G along each mode are orthogonal

to each other, i.e., (vec(G(�, :, :)))T vec(G(�
′
, :, :)) = 0 for

�
′ �= �, and ||G(�, :, :)||F equals the �-th singular value of

X1; and similarly for the other modes (we will actually prove

a more general result very soon). These orthogonality and

Frobenius norm properties of the Tucker core array generalize

a property of matrix SVD: namely, the “core matrix” of

singular values Σ in matrix SVD is diagonal, which implies

that its rows are orthogonal to each other, and the same is

true for its columns. Diagonality thus implies orthogonality of

one-lower-order slabs (sub-tensors of order one less than the

original tensor), but the converse is not true, e.g., consider[
1 1
1 −1

]
.

We have seen that diagonality of the core is not possible in

general for higher-order tensors, because it severely limits the

degrees of freedom; but all-orthogonality of one-lower-order

slabs of the core array, and the interpretation of their Frobenius

norms as singular values of a certain matrix view of the tensor

come without loss of generality (or optimality, as we will see

in the proof of the next property). This intuitively pleasing

result was pointed out by De Lathauwer [51], and it largely

motivates the analogy to matrix SVD – albeit simply truncating

slabs (or elements) of the full core will not give the best low

multilinear rank approximation of X in the case of three-

and higher-order tensors. The error bound above is actually

the proper generalization of the Eckart–Young theorem. In

the matrix case, because of diagonality there is only one

summation and equality instead of inequality.

Simply truncating the MLSVD at sufficiently high

(r
′
1, r

′
2, r

′
3) is often enough to obtain a good approximation

in practice – we may control the error as we wish, so long as

we pick high enough (r
′
1, r

′
2, r

′
3). The error ||X− X̂||2F is in

fact at most 3 times higher than the minimal error (N times

higher in the N -th order case) [16], [17]. If we are interested

in the best possible approximation of X with mode ranks



15

(r
′
1, r

′
2, r

′
3), however, then we need to consider the following,

after dropping the
′
s for brevity:

Property 1. [51], [53] Let
(
Û, V̂,Ŵ, Ĝ1

)
be a solution to

min
(U,V,W,G1)

||X1 − (V ⊗W)G1U
T ||2F

such that: U : I × r1, r1 ≤ I, UTU = I

V : J × r2, r2 ≤ J, VTV = I

W : K × r3, r3 ≤ K, WTW = I

G1 : r3r2 × r1

Then
• Ĝ1 = (V̂ ⊗ Ŵ)TX1Û;
• Substituting the conditionally optimal G1, the problem

can be recast in “concentrated” form as

max
(U,V,W)

||(V ⊗W)TX1U||2F
such that: U : I × r1, r1 ≤ I, UTU = I

V : J × r2, r2 ≤ J, VTV = I

W : K × r3, r3 ≤ K, WTW = I

• Û = dominant r1-dim. right subspace of (V̂⊗Ŵ)TX1;
• V̂ = dominant r2-dim. right subspace of (Û⊗Ŵ)TX2;
• Ŵ = dominant r3-dim. right subspace of (Û⊗ V̂)TX3;
• Ĝ1 has orthogonal columns; and
•
{
||Ĝ1(:,m)||22

}r1

m=1
are the r1 principal singular values

of (V̂ ⊗ Ŵ)TX1. Note that each column of Ĝ1 is a
vectorized slab of the core array Ĝ obtained by fixing
the first reduced dimension index to some value.

Proof. Note that ||vec(X1) − (U⊗V ⊗W) vec(G1)||22 =
||X1 − (V ⊗ W)G1U

T ||2F , so conditioned on (orthonor-

mal) U, V, W the optimal G is given by vec(Ĝ1) =
(U⊗V ⊗W)

T
vec(X1), and therefore Ĝ1 = (V ⊗

W)TX1U.

Consider ||X1 − (V ⊗W)G1U
T ||2F , define X̃1 := (V ⊗

W)G1U
T , and use that ||X1−X̃1||2F = Tr((X1−X̃1)

T (X1−
X̃1)) = ||X1||2F + ||X̃1||2F − 2Tr(XT

1 X̃1). By orthonormality

of U, V, W, it follows that ||X̃1||2F = ||G1||2F . Now, consider

−2Tr(XT
1 X̃1) = −2Tr(XT

1 (V ⊗W)G1U
T ),

and substitute G1 = (V ⊗W)TX1U to obtain

−2Tr(XT
1 (V ⊗W)(V ⊗W)TX1UUT ).

Using a property of the trace operator to bring the rightmost

matrix to the left, we obtain

−2Tr(UTXT
1 (V ⊗W)(V ⊗W)TX1U) =

−2Tr(GT
1 G1) = −2||G1||2F .

It follows that ||X1 − (V ⊗ W)G1U
T ||2F = ||X1||2F −

||G1||2F , so we may equivalently maximize ||G1||2F = ||(V⊗
W)TX1U||2F . From this, it immediately follows that Û is the

dominant right subspace of (V̂ ⊗ Ŵ)TX1, so we can take it

to be the r1 principal right singular vectors of (V̂⊗Ŵ)TX1.

The respective results for V̂ and Ŵ are obtained by appealing

to role symmetry. Next, we show that Ĝ1 has orthogonal

columns. To see this, let Ĝ1 = [ĝ1,1, · · · , ĝ1,r1 ], and Û =
[û1, · · · , ûr1 ]. Consider

ĝT
1,m1

ĝ1,m2
= ûT

m1
XT

1 (V̂ ⊗ Ŵ)(V̂ ⊗ Ŵ)TX1ûm2
.

Let ΓΣŨT be the SVD of (V̂⊗Ŵ)TX1. Then Ũ = [Û, Ǔ],
so

(V̂ ⊗ Ŵ)TX1um2
= γm2

σm2
,

with obvious notation; and therefore

ĝT
1,m1

ĝ1,m2
= σm1

σm2
γT
m1

γm2
= σm1

σm2
δ(m1 −m2),

by virtue of orthonormality of left singular vectors of (V̂ ⊗
Ŵ)TX1 (here δ(·) is the Kronecker delta). By role symmetry,

it follows that the slabs of Ĝ along any mode are likewise

orthogonal. It is worth mentioning that, as a byproduct of the

last equation, ||Ĝ(:, :,m)||2F = ||Ĝ1(:,m)||22 = ||ĝ1,m||22 =
σ2
m; that is, the Frobenius norms of the lateral core slabs are

the r1 principal singular values of (V̂ ⊗ Ŵ)TX1.

The best rank-1 tensor approximation problem over R is

NP-hard [54, Theorem 1.13], so the best low multilinear rank

approximation problem is also NP-hard (the best multilinear

rank approximation with (r1, r2, r3) = (1, 1, 1) is the best

rank-1 approximation). This is reflected in a key limitation

of the characterization in Property 1, which gives explicit

expressions that relate the sought U, V, W, and G, but it does

not provide an explicit solution for any of them. On the other

hand, Property 1 naturally suggests the following alternating

least squares scheme:

⊥-Tucker ALS

1) Initialize:

• U = r1 principal right singular vectors of X1;

• V = r2 principal right singular vectors of X2;

• W = r3 principal right singular vectors of X3;

2) repeat:

• U = r1 principal right sing. vec. of (V⊗W)TX1;

• V = r2 principal right sing. vec. of (U⊗W)TX2;

• W = r3 principal right sing. vec. of (U⊗V)TX3;

• until negligible change in ||(V ⊗W)TX1U||2F .

3) G1 = (V ⊗W)TX1U.

The initialization in step 1) [together with step 3)] corresponds

to (truncated) MLSVD. It is not necessarily optimal, as pre-

viously noted, but it does help as a very good initialization in

most cases. The other point worth noting is that each variable

update is optimal conditioned on the rest of the variables, so

the reward ||(V ⊗ W)TX1U||2F is non-decreasing (equiva-

lently, the cost ||X1 − (V⊗W)G1U
T ||2F is non-increasing)

and bounded from above (resp. below), thus convergence of

the reward (cost) sequence is guaranteed. Note the conceptual

similarity of the above algorithm with ALS for CPD, which

we discussed earlier. The first variant of Tucker-ALS goes

back to the work of Kroonenberg and De Leeuw; see [55]

and references therein.

Note that using MLSVD with somewhat higher (r1, r2, r3)
can be computationally preferable to ALS. In the case of big
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data, even the computation of MLSVD may be prohibitive,

and randomized projection approaches become more appealing

[56], [57]. A drastically different approach is to draw the

columns of U, V, W from the columns, rows, fibers of X
[58]–[60]. Although the idea is simple, it has sound algebraic

foundations and error bounds are available [61]. Finally, we

mention that for large-scale matrix problems Krylov subspace

methods are one of the main classes of algorithms. They

only need an implementation of the matrix-vector product to

iteratively find subspaces on which to project. See [62] for

Tucker-type extensions.

C. Compression as preprocessing

Consider a tensor X in vectorized form, and corresponding

CPD and orthogonal Tucker (⊥-Tucker) models

x = (A�B�C)1 = (U⊗V ⊗W)g.

Pre-multiplying with (U⊗V ⊗W)T = (UT ⊗VT ⊗WT )
and using the mixed-product rule for ⊗, �, we obtain

g =
(
(UTA)� (VTB)� (WTC)

)
1,

i.e., the Tucker core array G (shown above in vectorized form

g) admits a CPD decomposition of rank(G) ≤ rank(X). Let�
Ã, B̃, C̃

�
be a CPD of G, i.e., g = (Ã� B̃� C̃)1. Then

x = (U⊗V ⊗W)g = (U⊗V ⊗W)(Ã� B̃� C̃)1 =

=
(
(UÃ)� (VB̃)� (WC̃)

)
1,

by the mixed product rule. Assuming that the CPD of X is

essentially unique, it then follows that

A = UÃΠΛa, B = VB̃ΠΛb, C = WC̃ΠΛc,

where Π is a permutation matrix and ΛaΛbΛc = I. It follows

that

UTA = ÃΠΛa, VTB = B̃ΠΛb, WTC = C̃ΠΛc,

so that the CPD of G is essentially unique, and therefore

rank(G) = rank(X).
Since the size of G is smaller than or equal to the size of

X, this suggests that an attractive way to compute the CPD of

X is to first compress (using one of the orthogonal schemes

in the previous subsection), compute the CPD of G, and then

“blow-up” the resulting factors, since A = UÃ (up to column

permutation and scaling). It also shows that A = UUTA,

and likewise for the other two modes. The caveat is that the

discussion above assumes exact CPD and ⊥-Tucker models,

whereas in reality we are interested in low-rank least-squares

approximation – for this, we refer the reader to the Candelinc
theorem of Carroll et al. [63]; see also Bro & Andersson [64].

This does not work for a constrained CPD (e.g. one or more

factor matrices nonnegative, monotonic, sparse, . . . ) since

the orthogonal compression destroys the constraints. In the

ALS approach we can still exploit multi-linearity, however, to

update U by solving a constrained and/or regularized linear

least squares problem, and similarly for V and W, by role

symmetry. For G, we can use the vectorization property of

the Kronecker product to bring it to the right, and then use

a constrained or regularized linear least squares solver. By

the mixed product rule, this last step entails pseudo-inversion

of the U, V, W matrices, instead of their (much larger) Kro-

necker product. This type of model is sometimes called oblique
Tucker, to distinguish from orthogonal Tucker. More generally

than in ALS (see the algorithms in Section VII), one can fit

the constrained CPD in the uncompressed space, but with X
replaced by its parameter-efficient factorized representation.

The structure of the latter may then be exploited to reduce the

per iteration complexity [65].

VI. OTHER DECOMPOSITIONS

A. Compression

In Section V we have emphasized the use of ⊥-

Tucker/MLSVD for tensor approximation and compression.

This use was in fact limited to tensors of moderate order. Let

us consider the situation at order N and let us assume for

simplicity that r1 = r2 = . . . = rN = r > 1. Then the core

tensor G has rN entries. The exponential dependence of the

number of entries on the tensor order N is called the Curse of

Dimensionality: in the case of large N (e.g. N = 100), rN is

large, even when r is small, and as a result ⊥-Tucker/MLSVD

cannot be used. In such cases one may resort to a Tensor

Train (TT) representation or a hierarchical Tucker (hTucker)

decomposition instead [16], [66]. A TT of an N -th order tensor

X is of the form

X(i1, i2, . . . , iN ) =
∑

r1r2...rN−1

u
(1)
i1r1

u
(2)
r1i2r2

u
(3)
r2i3r3

. . . u
(N)
iNrN−1

,

(5)

in which one can see U(1) as the locomotive and the next

factors as the carriages. Note that each carriage “transports”

one tensor dimension, and that two consecutive carriages are

connected through the summation over one common index.

Since every index appears at most twice and since there are

no index cycles, the TT-format is “matrix-like”, i.e. a TT

approximation can be computed using established techniques

from numerical linear algebra, similarly to MLSVD. Like for

MLSVD, fiber sampling schemes have been developed too.

On the other hand, the number of entries is now O(NIr2), so

the Curse of Dimensionality has been broken. hTucker is the

extension in which the indices are organized in a binary tree.

B. Analysis

In Section IV we have emphasized the uniqueness of CPD

under mild conditions as a profound advantage of tensors over

matrices in the context of signal separation and data analysis

– constraints such as orthogonality or triangularity are not

necessary per se. An even more profound advantage is the

possibility to have a unique decomposition in terms that are

not even rank-1. Block Term Decompositions (BTD) write a

tensor as a sum of terms that have low multilinear rank, i.e.

the terms can be pictured as in Fig. 6 rather than as in Fig.

1 [67], [68]. Note that rank-1 structure of data components is

indeed an assumption that needs to be justified.

As in CPD, uniqueness of a BTD is up to a permutation

of the terms. The scaling/counterscaling ambiguities within
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a rank-1 term generalize to the indeterminacies in a Tucker

representation. Expanding the block terms into sums of rank-

1 terms with repeated vectors as in (4) yields a form that is

known as PARALIND [69]; see also more recent results in

[70]–[72].

C. Fusion

Multiple data sets may be jointly analyzed by means of

coupled decompositions of several matrices and/or tensors,

possibly of different size [73], [74]. An early variant, in

which coupling was imposed through a shared covariance

matrix, is Harshman’s PARAFAC2 [75]. In a coupled setting,

particular decompositions may inherit uniqueness from other

decompositions; in particular, the decomposition of a data

matrix may become unique thanks to coupling [76].

VII. ALGORITHMS

A. ALS: Computational aspects

1) CPD: We now return to the basic ALS algorithm for

CPD, to discuss (efficient) computation issues. First note that

the pseudo-inverse that comes into play in ALS updates is

structured: in updating C, for example

C ← argmin
C

||X3 − (B�A)CT ||2F ,
the pseudo-inverse

(B�A)† =
[
(B�A)T (B�A)

]−1
(B�A)T ,

can be simplified. In particular,

(B�A)T (B�A) =

⎡⎢⎣ AD1(B)
...

ADJ(B)

⎤⎥⎦
T ⎡⎢⎣ AD1(B)

...

ADJ(B)

⎤⎥⎦
=

J∑
j=1

Dj(B)ATADj(B),

where we note that the result is F × F , and element

(f1, f2) of the result is element (f1, f2) of ATA times∑J
j=1 B(j, f1)B(j, f2). The latter is element (f1, f2) of BTB.

It follows that

(B�A)T (B�A) = (BTB) ∗ (ATA),

which only involves the Hadamard product of F×F matrices,

and is easy to invert for small ranks F (but note that in the

case of big sparse data, small F may not be enough). Thus

the update of C can be performed as

CT ← (
(BTB) ∗ (ATA)

)−1
(B�A)TX3.

For small F , the bottleneck of this is actually the computation

of (B � A)TX3 – notice that B � A is IJ × F , and X3

is IJ × K. Brute-force computation of (B � A)TX3 thus

demands IJF additional memory and flops to instantiate

B � A, even though the result is only F × K, and IJKF
flops to actually compute the product – but see [77]–[79].

If X (and therefore X3) is sparse, having NNZ(X) nonzero

elements stored in a [i,j,k,value] list, then every nonzero

element multiplies a column of (B�A)T , and the result should

be added to column k. The specific column needed can be

generated on-the-fly with F+1 flops, for an overall complexity

of (2F+1)NNZ(X), without requiring any additional memory

(other than that needed to store the running estimates of A,

B, C, and the data X). When X is dense, the number of

flops is inevitably of order IJKF , but still no additional

memory is needed this way. Furthermore, the computation

can be parallelized in several ways – see [77], [80]–[83]

for various resource-efficient algorithms for matricized tensor
times Khatri–Rao product (MTTKRP) computations.

2) Tucker: For ⊥-Tucker ALS, we need to compute prod-

ucts of type (V ⊗ W)TX1 (and then compute the principal

right singular vectors of the resulting r2r3 × I matrix). The

column-generation idea can be used here as well to avoid

intermediate memory explosion and exploit sparsity in X when

computing (V ⊗W)TX1.

For oblique Tucker ALS we need to compute

((V ⊗W)G1)
†
X1 for updating U, and

(
U† ⊗V† ⊗W†)x

for updating g ↔ G. The latter requires pseudo-inverses of

relatively small matrices, but note that

((V ⊗W)G1)
† �= G†

1 (V ⊗W)
†
,

in general. Equality holds if V⊗W is full column rank and
G1 is full row rank, which requires r2r3 ≤ r1.

ALS is a special case of block coordinate descent (BCD),

in which the subproblems take the form of linear LS esti-

mation. As the musings in [84] make clear, understanding

the convergence properties of ALS is highly nontrivial. ALS

monotonically reduces the cost function, but it is not guaran-

teed to converge to a stationary point. A conceptually easy

fix is to choose for the next update the parameter block that

decreases the cost function the most – this maximum block
improvement (MBI) variant is guaranteed to converge under

some conditions [85]. However, in the case of third-order CPD

MBI doubles the computation time as two possible updates

have to be compared. At order N , the computation time

increases by a factor N − 1 – and in practice there is usually

little difference between MBI and plain ALS. Another way

to ensure convergence of ALS is to include proximal regu-

larization terms and invoke the block successive upper bound
minimization (BSUM) framework of [86], which also helps in

ill-conditioned cases. In cases where ALS converges, it does so

at a local linear rate (under some non-degeneracy condition),

which makes it (locally) slower than some derivative-based

algorithms [87], [88], see further. The same is true for MBI

[85].

B. Gradient descent

Consider the squared loss

L(A,B,C) := ||X1 − (C�B)AT ||2F =

tr
(
(X1 − (C�B)AT )T (X1 − (C�B)AT )

)
= ||X1||2F−

2 tr
(
XT

1 (C�B)AT
)
+ tr

(
A(C�B)T (C�B)AT

)
.

Recall that (C�B)T (C�B) = (CTC)∗(BTB), so we may

equivalently take the gradient of −2 tr
(
XT

1 (C�B)AT
)
+
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tr
(
A(CTC) ∗ (BTB)AT

)
. Arranging the gradient in the

same format11 as A, we have

∂L(A,B,C)

∂A
= −2XT

1 (C�B) + 2 A
[
(CTC) ∗ (BTB)

]
= −2

(
XT

1 −A(C�B)T
)
(C�B),

Appealing to role symmetry, we likewise obtain

∂L(A,B,C)

∂B
= −2XT

2 (C�A) + 2 B
[
(CTC) ∗ (ATA)

]
= −2

(
XT

2 −B(C�A)T
)
(C�A),

∂L(A,B,C)

∂C
= −2XT

3 (B�A) + 2 C
[
(BTB) ∗ (ATA)

]
= −2

(
XT

3 −C(B�A)T
)
(B�A).

Remark 3. The conditional least squares update for A is

A ← [
(CTC) ∗ (BTB)

]−1
(C�B)TX1,

So taking a gradient step or solving the least-squares sub-
problem to (conditional) optimality involves computing the
same quantities: (CTC)∗(BTB) and (C�B)TX1. The only
difference is that to take a gradient step you don’t need to
invert the F × F matrix (CTC) ∗ (BTB). For small F , this
inversion has negligible cost relative to the computation of the
MTTKRP (C�B)TX1. Efficient algorithms for the MTTKRP
can be used for gradient computations as well; but note that,
for small F , each gradient step is essentially as expensive as
an ALS step. Also note that, whereas it appears that keeping
three different matricized copies of X is necessary for efficient
gradient (and ALS) computations, only one is needed – see
[81], [89].

With these gradient expressions at hand, we can employ any

gradient-based algorithm for model fitting.

C. Quasi-Newton and Nonlinear Least Squares

The well-known Newton descent algorithm uses a local

quadratic approximation of the cost function L(A,B,C) to

obtain a new step as the solution of the set of linear equations

Hp = −g, (6)

in which g and H are the gradient and Hessian of L, respec-

tively. As computation of the Hessian may be prohibitively ex-

pensive, one may resort to an approximation, leading to quasi-

Newton and Nonlinear Least Squares (NLS). Quasi-Newton

methods such as Nonlinear Conjugate Gradients (NCG) and

(limited memory) BFGS use a diagonal plus low-rank matrix

approximation of the Hessian. In combination with line search

or trust region globalization strategies for step size selection,

quasi-Newton does guarantee convergence to a stationary

point, contrary to plain ALS, and its convergence is superlinear

[89], [90].

NLS methods such as Gauss–Newton and Levenberg–

Marquardt start from a local linear approximation of the

residual X1 − (C � B)AT to approximate the Hessian as

11In some books,
∂f(A)
∂A

stands for the transpose of what we denote by
∂f(A)
∂A

, i.e., for an F × I matrix instead of I × F in our case.

Dθϕ(θ)
TDθϕ(θ), with Dθϕ(θ) the Jacobian matrix of ϕ(θ)

(where θ is the parameter vector; see section VIII for def-

initions of ϕ(θ), and Dθϕ(θ)). The algebraic structure of

Dθϕ(θ)
TDθϕ(θ) can be exploited to obtain a fast inexact

NLS algorithm that has several favorable properties [89], [91].

Briefly, the inexact NLS algorithm uses a “parallel version”

of one ALS iteration as a preconditioner for solving the linear

system of equations (6). (In this parallel version the factor

matrices are updated all together starting from the estimates in

the previous iteration; note that the preconditioning can hence

be parallelized.) After preconditioning, (6) is solved inexactly

by a truncated conjugate gradient algorithm. That is, the set

of equations is not solved exactly and neither is the matrix

Dθϕ(θ)
TDθϕ(θ) computed or stored. Storage of A, B, C

and ATA, BTB, CTC suffices for an efficient computation

of the product of a vector with Dθϕ(θ)
TDθϕ(θ), exploiting

the structure of the latter, and an approximate solution of (6)

is obtained by a few such matrix-vector products. As a result,

the conjugate gradient refinement adds little to the memory

and computational cost, while it does yield the nice NLS-type

convergence behavior. The algorithm has close to quadratic

convergence, especially when the residuals are small. NLS has

been observed to be more robust for difficult decompositions

than plain ALS [89], [91]. The action of Dθϕ(θ)
TDθϕ(θ)

can easily be split into smaller matrix-vector products (N2 in

the N -th order case), which makes inexact NLS overall well-

suited for parallel implementation. Variants for low multilinear

rank approximation are discussed in [92], [93] and references

therein.

D. Exact line search

An important issue in numerical optimization is the choice

of step-size. One approach that is sometimes used in multi-

way analysis is the following [94], which exploits the multi-

linearity of the cost function. Suppose we have determined an

update (“search”) direction, say the negative gradient one. We

seek to select the optimal step-size μ for the update⎡⎣ A
B
C

⎤⎦←
⎡⎣ A

B
C

⎤⎦+ μ

⎡⎣ ΔA

ΔB

ΔC

⎤⎦ ,

and the goal is to

min
μ

∣∣∣∣X1 − ((C+ μΔC)� (B+ μΔB)) (A+ μΔA)
T
∣∣∣∣2
F
.

Note that the above cost function is a polynomial of degree

6 in μ. We can determine the coefficients c0, · · · , c6 of this

polynomial by evaluating it for 7 different values of μ and

solving⎡⎢⎢⎢⎣
1 μ1 μ2

1 · · · μ6
1

1 μ2 μ2
2 · · · μ6

2
...

1 μ7 μ2
7 · · · μ6

7

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

c0
c1
...

c6

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
�1
�2
...

�7

⎤⎥⎥⎥⎦ ,

where �1, · · · , �7 are the corresponding loss values. Once

the coefficients are determined, the derivative is the 5-th

order polynomial c1 + 2c2μ + · · · + 6c6μ
5, and we can use

numerical root finding to evaluate the loss at its roots and
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pick the best μ. The drawback of this is that it requires

11 evaluations of the loss function. We can work out the

polynomial coefficients analytically, but this can only save

about half of the computation. The bottom line is that optimal

line search costs more than gradient computation per se (which

roughly corresponds to 3 evaluations of the loss function, each

requiring IJKF flops for dense data). In practice, we typically

use a small, or “good enough” μ, resorting to exact line search

in more challenging cases, for instance where the algorithm

encounters “swamps”. Note that the possibility of exact line

search is a profound implication of the multilinearity of the

problem. More generally, the optimal update in a search plane

(involving two search directions (ΔT
A,1,Δ

T
B,1,Δ

T
C,1)

T and

(ΔT
A,2,Δ

T
B,2,Δ

T
C,2)

T and even in a three-dimensional search

space (additionally involving scaling of (AT ,BT ,CT )T ) can

be found via polynomial rooting [95].

E. Missing values

Consider the C-update step in ALS, i.e., minC ||X3−(B�
A)CT ||2F . If there are missing elements in X (and so in X3),

define the weight tensor

W(i, j, k) =

{
1, X(i, j, k) : available

0, otherwise.
,

and consider minC ||W3 ∗ (X3 − (B � A)CT )||2F ⇐⇒
minC ||W3 ∗X3−W3 ∗ ((B�A)CT )||2F , where matrix W3

is the matrix unfolding of tensor W obtained in the same way

that matrix X3 is obtained by unfolding tensor X. Notice that

the Hadamard operation applies to the product ((B�A)CT ),
not to (B�A) – and this complicates things. One may think

of resorting to column-wise updates, but this does not work

either. Instead, if we perform row-wise updates on C, then we

have to deal with minimizing over C(k, :) the squared norm

of vector

Diag(W3(:, k))X3(:, k)−Diag(W3(:, k))(B�A)(C(k, :))T ,

which is a simple linear least squares problem.

There are two basic alternatives to the above strategy for

handling missing data. One is to use derivative-based methods,

such as (stochastic) gradient descent (see next two subsections)

or Gauss-Newton – derivatives are easy to compute, even in the

presence of W. Stochastic gradient descent, in particular, com-

putes gradient estimates by drawing only from the observed

values. Effectively bypassing the element-wise multiplication

by W, stochastic gradient methods deal with missing data in

a natural and effortless way. This point is well-known in the

machine learning community, but seemingly under-appreciated

in the signal processing community, which is more used to

handling complete data.

The other alternative is to use a form of expectation-

maximization to impute the missing values together with the

estimation of the model parameters A,B,C [96]. One can

initially impute misses with the average of the available entries

(or any other reasonable estimate). More specifically, let Xa

be a tensor that contains the available elements, and Xm the

imputed ones. Then set Xc = W ∗ Xa + (1 − W) ∗ Xm,

and fit A,B,C to Xc. Set Xm = �A,B,C�, Xc = W ∗

Xa + (1 − W) ∗ Xm, and repeat. It is easy to see that

the above procedure amounts to alternating optimization over

A,B,C, (1−W)∗Xm, and it thus decreases the cost function

monotonically.

Whether it is best to ignore missing elements or impute

them is dependent on the application; but we note that for very

big and sparse data, imputation is very inefficient in terms of

memory, and is thus avoided.

Note that, as a short-cut in large-scale applications, one

may deliberately use only part of the available entries when

estimating a decomposition [18] (see also the next section);

entries that have not been selected, may be used for model

cross-validation. If the data structure is sufficiently strong to

allow such an approach, it can lead to a very significant speed-

up and it should be considered as an alternative to full-scale

parallel computation. As a matter of fact, in applications that

involve tensors of high order, the latter is not an option due to

the curse of dimensionality (i.e., the number of tensor entries

depends exponentially on the order and hence quickly becomes

astronomically high).

F. Stochastic gradient descent

Stochastic gradient descent (SGD) has become popular in

the machine learning community for many types of con-

vex and, very recently, non-convex optimization problems

as well. In its simplest form, SGD randomly picks a data

point X(i, j, k) from the available ones, and takes a gradient

step only for those model parameters that have an effect on

X(i, j, k); that is, only the i-th row of A, the j-th row of B
and the k-th row of C. We have

∂

∂A(i, f)

⎛⎝X(i, j, k)−
F∑

f=1

A(i, f)B(j, f)C(k, f)

⎞⎠2

=

−2

⎛⎝X(i, j, k)−
F∑

f ′=1

A(i, f
′
)B(j, f

′
)C(k, f

′
)

⎞⎠×

B(j, f)C(k, f),

so that

∂

∂A(i, :)
= −2

⎛⎝X(i, j, k)−
F∑

f=1

A(i, f)B(j, f)C(k, f)

⎞⎠×

(B(j, :) ∗C(k, :)) .

Notice that the product B(j, :) ∗C(k, :) is used once outside

and once inside the parenthesis, so the number of multiplica-

tions needed is 2F for the update of A(i, :), and 6F for the

(simultaneous) SGD update of A(i, :), B(j, :), C(k, :). This

makes SGD updates very cheap, but the biggest gain is in

terms of random access memory (we only need to load one

X(i, j, k), and A(i, :), B(j, :), C(k, :) each time). There is

one more inherent advantage to SGD: it can naturally deal

with missing elements, as these are simply never “recalled”

to execute an update. The drawback is that a truly random

disk access pattern is a terrible idea (especially if the data is

stored in rotating media) as the computation will inevitably
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be bogged down from the disk I/O. For this reason, we

prefer fetching blocks of data from secondary memory, and

use intelligent caching strategies. To this end, note that SGD

updates involving (stemming from) X(i, j, k) and X(i
′
, j

′
, k

′
)

do not conflict with each other and can be executed in parallel,

provided i
′ �= i, j

′ �= j, k
′ �= k – where all three �= must

hold simultaneously. This means that the maximum number of

parallel SGD updates is min(I, J,K) in the three-way case,

and min({In}Nn=1) in the general N -way case. This limits

the relative level of parallelization, especially for high N .

Another disadvantage is that the convergence can be very slow

(sublinear). See [97] for parallel SGD algorithms for CPD

and coupled tensor decomposition. In [98] a block sampling

variant is discussed that allows one to efficiently decompose

TB-size tensors without resorting to parallel computation. The

approach leverages CPD uniqueness of the sampled blocks

to uniqueness of the CPD of the full tensor. For both SGD

and the block sampling variant, the choice of step size is

important for convergence. When chosen appropriately, the

latter method often converges very fast. A randomized block-

sampling approach for very sparse datasets was proposed in

[99], building upon the idea of parallel CPD decomposition of

multiple pseudo-randomly drawn sub-tensors, and combining

the CPDs using anchor rows. Sampling is based on mode

densities, and identifiability is guaranteed if the sub-tensors

have unique CPD.

G. Constraints

In practice, we are often interested in imposing constraints

on a CPD model. One may question the need for this – after

all, CPD is essentially unique under relatively mild conditions.

Constraints are nevertheless useful in

• Restoring identifiability in otherwise non-identifiable cases;

• Improving estimation accuracy in relatively challenging

(low-SNR, and/or barely identifiable, and/or numerically ill-

conditioned) cases;

• Ensuring interpretability of the results (e.g., power spectra

cannot take negative values); and

• As a remedy against ill-posedness.

There are many types of constraints that are relevant in

many applications, including those in the “laundry list” below.

• Symmetry or Hermitian (conjugate) symmetry: B = A, or

B = A∗, leading to X(:, :, k) = ADk(C)AT or X(:, :, k) =
ADk(C)AH . This is actually only partial symmetry, with

full symmetry (or simply symmetry) corresponding to C =
B = A. Partial symmetry corresponds to joint diagonalization

of the frontal slabs, using a non-orthogonal and possibly fat

diagonalizer A – that is, the inner dimension can exceed the

outer one. Symmetric tensors (with possible conjugation in

certain modes) arise when one considers higher-order statistics

(HOS).

• Real-valued parameters: When X ∈ R
I×J×K , complex-

valued A,B,C make little sense, but sometimes do arise

because tensor rank is sensitive to the field over which the

decomposition is taken. This is an issue in some applica-

tions, particularly in Chemistry and Psychology. Engineers are

usually not annoyed by complex A,B,C, but they may still

need the following (stronger) constraint to model, e.g., power

spectra.

• Element-wise non-negativity: A ≥ 0 and/or B ≥ 0, and/or

C ≥ 0. When all three are in effect, the resulting problem

is known as non-negative tensor factorization (NTF). More

generally, bound constraints may apply. Non-negativity can

help restore uniqueness, because even non-negative matrix

factorization (NMF) is unique under certain conditions – these

are much more restrictive than those for CPD uniqueness,

but, taken together, low-rank CPD structure and non-negativity

can restore identifiability. To appreciate this, note that when

kC = 1 CPD alone cannot be unique, but if NMF of X(:, :
, k) = ADk(C)BT is unique (this requires F < min(I, J)
and a certain level of sparsity in A and B), then non-negativity

can still ensure essential uniqueness of A,B,C.

• Orthogonality: This may for instance be the result of

prewhitening [49].

• Probability simplex constraints: A(i, :) ≥ 0, A(i, :)1 = 1,

∀ i, or A(:, f) ≥ 0, 1TA(:, f) = 1, ∀ f , are useful when

modeling allocations or probability distributions.

• Linear constraints: More general linear constraints on

A,B,C are also broadly used. These can be column-wise,

row-wise, or matrix-wise, such as tr(WA) ≤ b.
• Monotonicity and related constraints: These are useful in

cases where one deals with, e.g., concentrations that are known

to be decaying, or spectra that are known to have a single or

few peaks (unimodality, oligo-modality [100]).

• Sparsity: In many cases one knows (an upper bound on) the

number of nonzero elements of A,B,C, per column, row, or

as a whole; or the number of nonzero columns or rows of

A,B,C (group sparsity).

• Smoothness: Smoothness can be measured in different ways,

but a simple one is in terms of convex quadratic inequalities

such as ∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
⎡⎢⎣ −1 1 0 · · · 0

0 −1 1 0 · · · 0
...

. . .
. . .

⎤⎥⎦A

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

F

.

• Data model constraints: All the above constraints apply

to the model parameters. One may also be interested in

constraints on the reconstructed model of the data, e.g.,

(A�B�C)1 ≥ 0, (element-wise), 1T (A�B�C)1 = 1,

if X models a joint probability distribution, or in (A�B�C)1
being “smooth” in a suitable sense.

• Parametric constraints: All the above are non-parametric
constraints. There are also important parametric constraints
that often arise, particularly in signal processing applications.

Examples include Vandermonde or Toeplitz structure imposed

on A, B, C. Vandermonde matrices have columns that are

(complex or real) exponentials, and Toeplitz matrices model

linear time-invariant systems with memory (convolution). Fac-

tors may further be explicitly modeled as polynomial, sum-

of-exponential, exponential polynomial, rational, or sigmoidal

functions. This may for instance reduce the number of pa-

rameters needed and suppress noise. Various non-parametric

constraints can be explicitly parametrized; e.g., non-negativity
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can be parametrized as A(i, j) = θ2i,j , θ ∈ R, a magni-

tude constraint |A(i, j)| = 1 as A(i, j) = e
√−1θi,j , and

orthogonality may be parameterized via Jacobi rotations or

Householder reflections. Smoothness, probability simplex, and

linear constraints can be formulated as parametric constraints

as well.

The main issue is then how do we go about enforcing these

constraints. The answer depends on the type of constraint con-

sidered. Parametric constraints can be conveniently handled

in the framework of derivative-based methods such as quasi-

Newton and NLS, by using the chain rule in the computation

of derivatives. In this way, the proven convergence properties

of these methods can be extended to constrained and possibly

coupled decompositions [73].

Linear equality and inequality constraints (including mono-

tonicity) on individual loading matrices (A,B,C) can be han-

dled in ALS, but change each conditional update from linear

least-squares (solving a system of linear equations in the least-

squares sense) to quadratic programming. E.g., non-negative

least-squares is much slower than unconstrained least squares,

and it requires specialized algorithms. This slows down the

outer ALS loop considerably; but see the insert entitled

Constrained least squares using ADMM. Direct application

of ADMM for fitting the (nonconvex) CPD model has been

considered in [101], using non-negative tensor factorization as

the working example. This approach has certain advantages: it

can outperform standard approaches in certain scenarios, and

it can incorporate various constraints beyond non-negativity,

including constraints that couple some of the factor matrices.

The drawback is that direct ADMM requires sophisticated

parameter tuning, and even then it is not guaranteed to

converge – in contrast to the AO-ADMM hybrid approach

of [102] that soon followed [101]. A nice contribution of

[101] is that it showed how to parallelize ADMM (and, as

a special case, plain ALS) for high-performance computing

environments.

Also note that linear constraints on the reconstructed data

model, such as (A � B � C)1 ≥ 0, are nonlinear in

A,B,C, but become conditionally linear in A when we fix

B and C, so they too can be handled in the same fashion.

Smoothness constraints such as the one above are convex, and

can be dualized when solving the conditional mode loading

updates, so they can also be handled in ALS, using quadratic

programming. Symmetry constraints are more challenging, but

one easy way of approximately handling them is to introduce

a quadratic penalty term, such as ||B −A||2F , which has the

benefit of keeping the conditional updates in ALS simple.

Sparsity can often be handled using �1 regularization, which

turns linear least squares conditional updates to LASSO-type

updates, but one should beware of latent scaling issues, see

[107].

Many other constraints though, such as hard �0 sparsity, uni-

modality, or finite-alphabet constraints are very hard to handle.

A general tool that often comes handy under such circum-

stances is the following. Consider
∣∣∣∣X3 − (B�A)CT

∣∣∣∣2
F

,

and let M := (B � A). Then
∣∣∣∣X3 − (B�A)CT

∣∣∣∣2
F

=∣∣∣∣∣∣X3 −
∑F

f=1 M(:, f)(C(:, f))T
∣∣∣∣∣∣2
F

. Fix all the columns of

Constrained least squares using ADMM: Consider

minC∈C
∣∣∣∣X3 −MCT

∣∣∣∣2
F

, where C is a convex constraint

set, and in the context of ALS for CPD M := (B � A).
Introduce an auxiliary variable C̃ and the function

fC(C) :=

{
0, C ∈ C
∞, otherwise.

Then we may equivalently consider

min
C,C̃

1
2

∣∣∣∣X3 −MCT
∣∣∣∣2
F
+ fC(C̃)

subject to: C̃ = C.

This reformulation falls under the class of problems that can

be solved using the alternating direction method of multipliers

(ADMM) – see [103] for a recent tutorial. The ADMM

iterates for this problem are

CT ← (MTM+ ρI)−1(MTX3 + ρ(C̃+U)T ),

C̃ ← argmin
C̃

fC(C̃) +
ρ

2
‖C̃−C+U‖2F ,

U ← U+ C̃−C.

Note that MTX3 and (MTM+ρI)−1 remain fixed through-

out the ADMM iterations. We can therefore compute MTX3

(or XT
3 M: a MTTKRP computation) and the Cholesky

decomposition of (MTM + ρI) = LLT , where L is lower

triangular, and amortize the cost throughout the iterations.

Then each update of C can be performed using one forward

and one backward substitution, at much lower complexity.

The update of C̃ is the so-called proximity operator of the

function (1/ρ)fC(·), which is easy to compute in many cases

of practical interest [104], including (but not limited to)

• Non-negativity. In this case, the update simply projects

onto the non-negative orthant. Element-wise bounds can

be handled in the same way.

• Sparsity via �1-regularization. The update is the well-

known soft-thresholding operator.

• Simplex constraint. See [105].

• Smoothness regularization. See [102].

In the context of CPD fitting, the above ADMM loop is

embedded within the outer Alternating Optimization (AO)

loop that alternates over the matrix variables A, B, C.

After several outer iterations, one can use previous iterates

to warm-start the inner ADMM loop. This ensures that the

inner loop eventually does very few iterations; and, due to

computation caching / amortization, each inner loop costs

as much as solving an unconstrained linear least squares

problem. The net result is that we can perform constrained
ALS at roughly the cost of unconstrained ALS, for a wide

variety of constraints, in a mix-and-match, plug-and-play

fashion, so long as the proximity operator involved is easy

to compute. This is the main attraction of the AO-ADMM

approach of [102], which can also deal with more general

loss functions and missing elements, while maintaining the

monotone decrease of the cost and conceptual simplicity of

ALS. The AO-ADMM framework has been recently extended

to handle robust tensor factorization problems where some

slabs are grossly corrupted [106].
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C except column f0. Define X̃3 = X3 − ∑F
f=1, f �=f0

M(:

, f)(C(:, f))T , c := C(:, f0), and m := M(:, f0), and

consider

min
c∈C

∣∣∣∣∣∣X̃3 −mcT
∣∣∣∣∣∣2
F
,

where C is a column-wise constraint.

This corresponds to performing ALS over each column of

C, i.e., further breaking down the variable blocks into smaller

pieces.

Lemma 1. For any column-wise constraint set C it holds that

min
c∈C

∣∣∣∣∣∣X̃3 −mcT
∣∣∣∣∣∣2
F
⇐⇒ min

c∈C
||c̃− c||2F ,

where c̃ :=
(

mT

||m||22 X̃3

)T
, i.e., the optimal solution of the

constrained least-squares problem is simply the projection of
the unconstrained least-squares solution onto the constraint
set C. This is known as the Optimal Scaling Lemma; see [100]
and references therein.

Armed with Lemma 1, we can easily enforce a wide variety

of column-wise (but not row-wise) constraints. For example,

• if C =
{
c ∈ R

K | w(c) = s
}

, where w(·) counts the

number of nonzeros (Hamming weight) of its argument,

then copt is obtained by zeroing out the K − s smallest

elements of c̃.

• If C is the set of complex exponentials, then copt is

obtained by peak-picking the magnitude of the Fourier

transform of c̃.

• If C is the set of non-decreasing sequences, then copt is

obtained via monotone regression of c̃.

The drawback of using Lemma 1 is that it splits the opti-

mization variables into smaller blocks, which usually slows

down convergence. Variable splitting can also be used to

tackle problems that involve constraints that couple the loading

matrices. An example for the partial symmetry constraint

(B = A) is provided in the supplementary material.

VIII. CRAMÉR-RAO BOUND

The Cramér-Rao bound is the most commonly used perfor-

mance benchmarking tool in statistical signal processing. It

is a lower bound on the variance of any unbiased estimator

(and thus on mean square error of unbiased estimators), which

is expressed in terms of the (pseudo-)inverse of the Fisher
information matrix. In many cases it is hard to prove that

an estimator is unbiased, but if the empirical bias is small,

the Cramér-Rao bound is still used as a benchmark. See

the supplementary material for general references and more

motivation and details about the Cramér-Rao bound. We derive

the Fisher information matrix and the corresponding Cramér-

Rao bound for the CPD model

vec (X) = (C�B�A)1+ vec (N) . (7)

Assuming the elements of N come from an i.i.d. Gaussian

distribution with variance σ2, it has been shown that the FIM

can be derived in a simpler way without resorting to taking

expectations. Denote θ as the long vector obtained by stacking

all the unknowns,

θ =
[

vec (A)
T

vec (B)
T

vec (C)
T
]T

,

and define the nonlinear function

ϕ(θ) = (C�B�A)1,

then the FIM is simply given by [108] (cf. Proposition 2 in

the supplementary material)

Φ =
1

σ2
Dθϕ(θ)

TDθϕ(θ),

where Dθϕ(θ) is the Jacobian matrix of ϕ(θ), which can be

partitioned into three blocks

Dθϕ(θ) =
[DAϕ(θ) DBϕ(θ) DCϕ(θ)

]
.

Rewrite ϕ(θ) as follows

ϕ(θ) = (C�B�A)1 = vec
(
A(C�B)T

)
= ((C�B)⊗ II)vec (A) (8)

= KJK,I(A�C�B)1 = KJK,Ivec
(
B(A�C)T

)
= KJK,I((A�C)⊗ IJ)vec (B) (9)

= KK,IJ (B�A�C)1 = KK,IJvec
(
C(B�A)T

)
= KK,IJ ((B�A)⊗ IK)vec (C) , (10)

where Km,n represents the commutation matrix [109] of size

mn × mn. The commutation matrix is a permutation matrix

that has the following properties:

1) Km,nvec (S) = vec
(
ST
)
, where S is m× n;

2) Kp,m(S⊗T) = (T⊗ S)Kq,n, where T is p× q;

3) Kp,m(S�T) = T� S;

4) Kn,m = KT
m,n = K−1

m,n;

5) Kmp,nKmn,p = Km,np.

From (8)-(10), it is easy to see that

DAϕ(θ) = ((C�B)⊗ II),

DBϕ(θ) = KJK,I((A�C)⊗ IJ),

DCϕ(θ) = KK,IJ ((B�A)⊗ IK).

Similarly, we can partition the FIM into nine blocks

Φ =
1

σ2
Ψ =

1

σ2

⎡⎣ΨA,A ΨA,B ΨA,C

ΨB,A ΨB,B ΨB,C

ΨC,A ΨC,B ΨC,C

⎤⎦ .

For the diagonal blocks, using the properties of commutation

matrices

ΨA,A = ((C�B)⊗ II)
T ((C�B)⊗ II)

= (CTC ∗BTB)⊗ II ,

ΨB,B = (ATA ∗CTC)⊗ IJ ,

ΨC,C = (BTB ∗ATA)⊗ IK .

For the off-diagonal blocks, we derive ΨB,C here for tutorial

purposes

ΨB,C = DBϕ(θ)
TDCϕ(θ)

= ((A�C)⊗ IJ)
TKT

JK,IKK,IJ ((B�A)⊗ IK)

= ((A�C)⊗ IJ)
TKIK,J ((B�A)⊗ IK).
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To further simplify the expression, let us consider the product

of ΨB,C and vec
(
C̃
)

, where C̃ is an arbitrary K×F matrix

ΨB,Cvec
(
C̃
)

=((A�C)⊗ IJ)
TKIK,J ((B�A)⊗ IK)vec

(
C̃
)

=((A�C)⊗ IJ)
TKIK,Jvec

(
C̃(B�A)T

)
=KF,J(IJ ⊗ (A�C)T )(B�A� C̃)1

=KF,J(B� (ATA ∗CT C̃))1

=((ATA ∗CT C̃)�B)1

=vec
(
B(ATA ∗CT C̃)T

)
=(IF ⊗B)Diag

{
vec

(
ATA

)}
vec

(
C̃TC

)
=(IF ⊗B)Diag

{
vec

(
ATA

)}
KF,F (IF ⊗CT )vec

(
C̃
)
.

This holds for all possible C̃ ∈ R
K×F , implying

ΨB,C = (IF ⊗B)Diag
{

vec
(
ATA

)}
KF,F (IF ⊗CT ).

Similarly, we can derive the expression for ΨA,B and ΨA,C.

The entire expression for the FIM Φ = (1/σ2)Ψ is given

in (11).

Formulae for the Jacobian matrix and FIM have appeared

in [110]–[114], but the derivation is not as clear and straight-

forward as the one given here. Furthermore, we show below

that Ψ is rank deficient with deficiency at least 2F , and

identify the associated null subspace Ψ. When the FIM is

singular, it has been shown that we can simply take its pseudo-

inverse as CRB [115], albeit this bound might be far from

attainable, even in theory. When the size of the tensor is

large, it may be computationally intractable to take the pseudo-

inverse of Ψ directly, which takes O((I + J +K)3F 3) flops.

Instead of taking this route, we explain how we can compute

Ψ† efficiently when the deficiency is exactly 2F . Simulations

suggest that the deficiency is exactly 2F when the model is

identifiable.

Proposition 1. The rank of the (I+J+K)F ×(I+J+K)F
FIM Φ defined in (11) is at most (I + J +K)F − 2F .

Proof: Please refer to the proof of Proposition 4 for

the more general N -way tensor case, in the supplementary

material.

When the rank deficiency is equal to 2F (which appears

to be true almost surely when the model is identifiable, based

on our simulations) then we can compute the pseudo-inverse

of Ψ efficiently, invoking the following lemma proven in the

supplementary material of [116].

Lemma 2. Let matrix M be symmetric and singular, and the
matrix L satisfying range {L} = null {M}, then

M† = (M+ LLT )−1 − (L†)TL†. (12)

A matrix L that spans the null-space of Ψ can be written

as

L = ΥE,

where

E =

⎡⎣ IF � IF IF � IF
−IF � IF 0

0 −IF � IF

⎤⎦ .

Since L has full column rank, its pseudo-inverse is

L† =
(
LTL

)−1
LT =

(
ETΥTΥE

)−1
ETΥT .

Next, we define Ω by “completing” the range-space of Ψ

Ω = Ψ+ LLT

= Δ+ΥFΥT +ΥEETΥT

= Δ+Υ
(
F+EET

)
ΥT ,

where the definitions of Δ, F, and Υ can be found in (11).

If F+EET is invertible, applying matrix inversion lemma to

Ω leads to

Ω−1=Δ−1−Δ−1Υ

((
F+EET

)−1

+ΥΔ−1Υ

)−1

ΥTΔ−1.

Notice that Δ can be efficiently inverted, because it is

block diagonal, and each of its diagonal blocks is a Kro-

necker product. The most expensive step is to compute(
F+EET

)−1

and

((
F+EET

)−1

+ΥΔ−1Υ

)−1

, each

taking O(F 6) flops. However, this is still a huge improvement

when F � min(I, J,K), compared to directly inverting Δ
with O((I+J+K)3F 3) flops. Finally, according to Lemma 2,

Ψ† can be computed as

Ψ† = Δ−1 − (L†)TL†

=Δ−1−Δ−1Υ

((
F+EET

)−1

+ΥΔ−1Υ

)−1

ΥTΔ−1

−ΥE
(
ETΥTΥE

)−2
ETΥT ,

and the CRB is simply

Φ† = σ2Ψ†.

IX. APPLICATIONS

A. Blind Multiuser CDMA

In direct-sequence code-division multiple access (DS-

CDMA) communications, a transmitter sends logical digits

d ∈ {0, 1} by transmitting one of two analog waveforms bp(t),
where b := (−1)d ∈ {+1,−1}, p(t) =

∑L
�=1 s(�)c(t − �Tc),

t ∈ R is the bit signaling pulse, the L × 1 vector s is the

transmitter’s spreading code, L is the spreading gain, Tc

is the chip period, and c(·) is the chip pulse. In practice,

the transmitter sends a sequence of digits {d(n)}Nn=1 by

transmitting
∑N

n=1 b(n)p(t− nT ), and the receiver performs

matched filtering with respect to the chip pulse and outputs

a vector of chip-rate samples that, under ideal conditions

(no multipath, perfect synchronization, no noise), reproduce

{yn = sb(n)}Nn=1 at the other end of the communication link.

Collecting these output vectors in an L×N matrix

Y := [y1,y2, · · · ,yN ] = sbT ,

we notice that this is rank-1, and we can therefore recover

s and b from Y up to an inherently unresolvable sign
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σ2Φ = Ψ =

⎡⎣ (
BTB ∗CTC

)⊗ II (IF ⊗A)FC(IF ⊗B)T (IF ⊗A)FB(IF ⊗C)T

(IF ⊗B)FC(IF ⊗A)T
(
ATA ∗CTC

)⊗ IJ (IF ⊗B)FA(IF ⊗C)T

(IF ⊗C)FB(IF ⊗A)T (IF ⊗C)FA(IF ⊗B)T
(
ATA ∗BTB

)⊗ IK

⎤⎦ = Δ+ΥFΥT (11)

FA = Diag
{

vec
(
ATA

)}
KF,F

FB = Diag
{

vec
(
BTB

)}
KF,F

FC = Diag
{

vec
(
CTC

)}
KF,F

F =

⎡⎣ 0 FB FC

FA 0 FC

FA FB 0

⎤⎦
Δ =

⎡⎣(BTB ∗CTC
)⊗ II 0 0

0
(
ATA ∗CTC

)⊗ IJ 0
0 0

(
ATA ∗BTB

)⊗ IK

⎤⎦ ,Υ =

⎡⎣IF ⊗A 0 0
0 IF ⊗B 0
0 0 IF ⊗C

⎤⎦

ambiguity in this case, simply by reading out a column and

row of Y, respectively. In practice there will be noise and

other imperfections, so we will in fact extract the principal

component of Y instead, using SVD. This says that we can in

fact decode the transmitted sequence even if we do not know

the user’s “secret” spreading code, up to a sign ambiguity.
However, DS-CDMA is very wasteful in terms of bandwidth

when used in single-user mode; in fact it is a multiuser

multiplexing modality that is used as an alternative to classical

frequency- or time-division multiplexing. When there are two

co-channel transmitters sending information simultaneously,

then (again under idealized conditions)

Y = s1b
T
1 + s2b

T
2 = [s1, s2] [b1, b2]

T
= SBT ,

In this case, if we know s1 and s1 ⊥ s2 (i.e., sT1 s2 = 0), then

sT1 Y = sT1 s1b
T
1 + sT1 s2b

T
2 = ||s1||22bT

1 ,

and thus perfect interference cancelation and recovery of the

transmitted bits of both users is possible. Even if sT1 s2 �= 0,

so long as they are linearly independent, we can instead use

the so-called zero-forcing (interference nulling) equalizer

S†Y = (STS)−1STY = (STS)−1STSBT = BT ,

and recover both streams of bits. This is the basic idea behind

DS-CDMA: it is possible to unmix the user transmissions

when we know the spreading codes and these are linearly inde-

pendent (this requires L ≥ the number of users/transmitters).

However, unmixing is doomed to fail when we do not know S,

because rank-two or higher matrix factorization is not unique

in general.
The first application of CPD to (communication) signal

processing was exactly in bypassing this seemingly insur-

mountable problem, which is of interest in non-cooperative

communications [5]. Suppose that we have two (or more)

receivers simultaneously monitoring the same band of interest

from different locations. Let H(i, f) denote the path loss from

the f -th transmitter to the i-th receiver. Then

Y1 = [s1, s2]

[
H(1, 1) 0
0 H(1, 2)

]
[b1, b2]

T
= SD1(H)BT ,

Y2 = [s1, s2]

[
H(2, 1) 0
0 H(2, 2)

]
[b1, b2]

T
= SD2(H)BT ,

or

Y(i, j, k) := Yi(j, k) =

2∑
f=1

S(j, f)H(i, f)B(k, f),

a CPD model of rank F = 2. When there are more users,

we obtain a CPD model of higher rank. The key point here is

that the link to CPD allows recovering everything (spreading

codes, information bits, and path losses) for all transmitters, up

to the inherent (user) permutation and scaling / counter-scaling

ambiguities of CPD. This is true even if there are more co-

channel transmitters than the length of the spreading codes, L,

so long as one of the CPD identifiability conditions is satisfied.

The conceptual development presented here hides practical

concerns, such as multipath, noise, imperfect synchronization,

etc. There has been considerable follow-up work to address

some of these issues, such as [117].

B. Blind source separation

Let us consider the model yn = Asn, n ∈ {1, 2, · · · },

where yn is I × 1, sn is F × 1, and we ignore additive noise

for simplicity of exposition. We adopt one of the following

two assumptions.

Assumption A1): Uncorrelated sources of time-varying
powers. In this case,

Rn := E
[
yny

T
n

]
= AE

[
sns

T
n

]
AT =

A

⎡⎢⎣ E[(sn(1))
2] 0

. . .

0 E[(sn(F ))2]

⎤⎥⎦AT = ADnA
T .

If we assume that the average source powers remain approxi-

mately constant over “dwells”, and then switch to a different

“state”, then we can estimate

R̂n :=
1

N

Nn∑
m=N(n−1)+1

ymyT
m,

yielding a partially symmetric CPD model, which is particu-

larly well-suited for speech signal separation using an array

of microphones [4]. Given A, one can use its pseudo-inverse

to recover the sources if A is tall, else it is possible to

mitigate crosstalk using various beamforming strategies. When

the speakers are moving, we can even track A over time using

adaptive CPD approaches [118].

Assumption A2): Uncorrelated jointly WSS sources hav-
ing different power spectra. In this case, we rely instead on

correlations at different lags, i.e.,

Rn,� := E
[
yny

T
n−�

]
= AE

[
sns

T
n−�

]
AT =
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(since different sources are uncorrelated)

A

⎡⎢⎣ E[sn(1)sn−�(1)] 0
. . .

0 E[sn(F )sn−�(F )]

⎤⎥⎦AT =

(since each source is wide-sense stationary (WSS))

A

⎡⎢⎣ r1(�) 0
. . .

0 rF (�)]

⎤⎥⎦AT = AD�(R)AT ,

where R is the L × F (lags considered × sources) matrix

holding the autocorrelation vector for all the sources. The

power spectrum is the Fourier transform of the autocorrelation

vector, hence different spectra are associated with different

autocorrelation vectors, providing the necessary diversity to

distinguish the sources and estimate A. In practice we use

R̂� := 1
N

∑N+�
n=�+1 yny

T
n−�. This approach to source separa-

tion was pioneered by Belouchrani [119]. It took some years

to recognize that this is a special (partially symmetric) case

of CPD. These two approaches are second-order variants of

Independent Component Analysis [120]. Other assumptions

are possible, and may involve higher-order statistics, which

are by themselves higher-order tensors.

Tensor factorization can also be applied to source separation

in the power spectrum domain [121], which has applications

in radio astronomy and dynamic spectrum access.

C. Harmonics

Consider the harmonic mixture Y = VST , where V is

Vandermonde, i.e.,

V =

⎡⎢⎢⎢⎣
1 1 · · · 1
a1 a2 · · · aF
a21 a22 · · · a2F
...

...
...

...

⎤⎥⎥⎥⎦ ,

where the generators in the second row can be real or complex.

The model Y = VST seems unrelated to tensors, however,

upon defining

Y1 := Y(1 : end− 1, :) (all rows except last)

Y2 := Y(2 : end, :) (all rows except first)

V1 := V(1 : end−1, :), and D := Diag([a1, a2, · · · , aF ]),
it is easy to see that

Y1 = V1S
T ; Y2 = V1DST ,

i.e., a two-slab CPD model with Vandermonde structure in

one mode. If we instead take Y1 := Y(1 : end − 2, :),
Y2 := Y(2 : end − 1, :), Y3 := Y(3 : end, :), then we

obtain a three-slab CPD model with Vandermonde structure

in two modes. If S is also Vandermonde, then we get Van-

dermonde (harmonic) stucture in all three modes, leading to a

multidimensional harmonic retrieval (MDHR) problem. There

are deep connections between CPD and MDHR (and direction

finding using linear and rectangular arrays), originally revealed

in [122], [123]; see also [6].

D. Collaborative filtering - based recommender systems

Switching gears, consider a users × movies ratings matrix

R of size I × J , and the bilinear model R ≈ UVT , where

U is I × F , with F � min(i, J), and its i-th row contains a

reduced-dimension latent description of user i, V is J×F and

its j-th row contains a reduced-dimension latent description of

movie j, and the model R = UVT implies that user i’s rating

of movie j is approximated as R(i, j) ≈ U(i, :)(V(j, :))T ,

i.e., the inner product of the latent descriptions of the i-th user

and the j-th movie. The premise of this type of modeling is

that every user is a linear combination of F (few) user “types”

(e.g., child, college student, ... - these correspond to rows of

VT / columns of V); and every movie is a linear combination

of few movie types (e.g., comedy, drama, documentary, ... -

these correspond to columns of U). Typically, only a very

small percentage of the entries of R is available – between 1

per thousand and 1 per 105 in practice. Recommender systems

try to predict a user’s missing ratings using not only that user’s

past ratings but also the ratings of all other users – hence

the term collaborative filtering. Notice that, if we can find

U and V from the available ratings, then we can impute the

missing ones using inner products of columns of U and V.

This suggests using the following formulation.

min
U, V

∣∣∣∣W ∗ (R−UVT
)∣∣∣∣2

F
,

where W(i, j) = 1 if R(i, j) is available, 0 otherwise. In

practice it is unclear what would be a good F , so we typically

over-estimate it and then use a rank penalty to control over-

fitting and improve generalization ability. The rank of X is

equal to the number of nonzero singular values of X, and the

nuclear norm ||X||∗ (sum of singular values) is a commonly

used convex surrogate for rank (|| · ||1 vs. || · ||0 of the vector

of singular values). It has been shown [124] that

||X||∗ = min
U,V | X=UVT

1

2

(||U||2F + ||V||2F
)
,

giving rise to the following formulation

min
U, V

∣∣∣∣W ∗ (R−UVT
)∣∣∣∣2

F
+

λ

2

(||U||2F + ||V||2F
)
.

The above “flattened” matrix view of ratings hides the fact

that additional information on the context in which the ratings

were given is often available. This may range from time stamps

to detailed information regarding social context, etc. Every

different type of context can be treated as one additional mode,

giving rise to (very sparse) higher-order tensors. Taking time

stamp (rating time) as an example, consider the user × movie

× time tensor R with elements R(i, j, k). This can be modeled

using CPD as

min
A, B, C

K∑
k=1

∣∣∣∣W(:, :, k) ∗ (R(:, :, k)−ADk(C)BT
)∣∣∣∣2

F
,

where we have switched variables to the familiar ones for

CPD. We can use similar rank regularization surrogates in the

tensor case as well. We may also impose smoothness in the

temporal mode (columns of C) to reflect our expectation that

user preferences change slowly over time. These have been
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Multilinear maps for classification: In support vec-

tor machine (SVM) classification, we use a linear map-

ping wTx =
∑

i w(i)x(i) to discriminate between

vectors belonging to two different classes. When the

classes are not linearly separable, one can employ a

bilinear mapping xTWx =
∑

i,j W(i, j)x(i)x(j) =

vec
(
xTWx

)
=
(
xT ⊗ xT

)
vec(W) = (x⊗ x)

T
vec(W),

or even a multilinear one (x⊗ x⊗ x)
T

vec(W) =∑
i,j,k W(i, j, k)x(i)x(j)x(k). Notice that by augmenting

x with a unit as last element (i.e., replacing x by [x, 1]T ),

higher-order mappings include lower-order ones, hence it suf-

fices to consider the highest order. In such cases, the classifier

design problem boils down to designing a suitable matrix or

tensor W of weights. In order to keep the number of model

parameters low relative to the number of training samples (to

enable statistically meaningful learning and generalization), a

low-rank tensor model such as CPD [130] or low multilinear

rank one such as Tucker can be employed, and the model

parameters can be learned using a measure of classification

error as the cost function. A simple optimization solution is

to use SGD, drawing samples from the training set at random.

considered by Xiong et al. in [125] from a Bayesian point of

view, which also proposed a probabilistic model for the hyper-

parameters coupled with Markov Chain Monte-Carlo (MCMC)

techniques for automated parameter tuning. At about the same

time, Karatzoglou et al. [126] used age as the third mode,

binned into three groups: under 18, 18-50, and over 50. More

generally, they proposed adding a new mode for every piece

of contextual information provided. The problem with this is

that the more modes one adds, the sparser the resulting tensor,

and very sparse tensors require high rank to model (recall

that a diagonal matrix with nonzero entries on the diagonal is

full rank). Karatzoglou et al. proposed using a non-orthogonal

Tucker model instead of CPD. In particular, they proposed

min
U,V,W,G

||Γ ∗ (R− (U,V,W,G))||2F +

λ
(||U||2F + ||V||2F + ||W||2F

)
+ μ||G||2F ,

where Γ(i, j, k) = 1 if R(i, j, k) is available, 0 otherwise;

(U,V,W,G) stands for the Tucker model that is generated

by U,V,W,G; and ||X||2F is the sum of squared elements of

tensor X. Note that orthogonality is not imposed on U,V,W
because it is desired to penalize the model’s rank – so

constraints of type UTU = I cannot be imposed (recall that

||U||2F = Tr(UTU)).
In recommender systems one may additionally want to

exploit side information such as a user similarity matrix that

cannot simply be considered as an extra slice of the tensor R.

In such cases, coupled matrix-tensor decomposition (possibly

involving several matrices and tensors) can be used. There

are many possibilities and design choices in this direction; we

refer the reader to [127]–[129], and [73] which introduces a

domain specific language for fast prototyping.

E. Gaussian mixture parameter estimation

Consider F Gaussians N (μf , σ
2
fI), where μf ∈ R

I×1 is

the mean vector and σ2
f is the variance of the elements of the

f -th Gaussian. Let π = [π1, · · · , πF ]
T be a prior distribution,

and consider the following experiment: first draw fm ∼ π;

then draw xm ∼ N (μfm , σ2
fm

I). The distribution of xm is

then a mixture of the F Gaussians, i.e.,
∑F

f=1 πfN (μf , σ
2
fI).

Now run M independent trials of the above experiment to

create {xm}Mm=1. Given {xm}Mm=1, the problem of interest

is to estimate the mixture parameters {μf , σ
2
f , πf}Ff=1. Note

that it is possible to estimate F from {xm}Mm=1, but we

will assume it given for the purposes of our discussion.

Note the conceptual similarity of this problem and k-means

(here: F -means) clustering or vector quantization (VQ): the

main difference is that here we make an additional modeling

assumption that the “point clouds” are isotropic Gaussian

about their means. Let us consider

E[xm] =

F∑
fm=1

E[xm|fm]πfm =

F∑
f=1

μfπf = Mπ,

where M := [μ1, · · · ,μF ] (I × F ). Next, consider

E[xmxT
m] =

F∑
fm=1

E[xmxT
m|fm]πfm =

F∑
f=1

(
μfμ

T
f + σ2

fI
)
πf

= MDiag(π)MT + σ̄2I, σ̄2 :=

F∑
f=1

σ2
fπf .

It is tempting to consider third-order moments, which are

easier to write out in scalar form

E[xm(i)xm(j)xm(k)] =

F∑
f=1

E[xm(i)xm(j)xm(k)|f ]πf .

Conditioned on f , xm(i) = μf (i) + zm(i), where zm ∼
N (0, σ2

fI), and likewise for xm(j) and xm(k). Plugging these

back into the above expression, and using that

• If two out of three indices i, j, k are equal, then

E[zm(i)zm(j)zm(k)|f ] = 0, due to zero mean and indepen-

dence of the third; and

• If all three indices are equal, then E[zm(i)zm(j)zm(k)|f ] =
0 because the third moment of a zero-mean Gaussian is zero,

we obtain

E[xm(i)xm(j)xm(k)|f ] = μf (i)μf (j)μf (k)+

σ2
f (μf (i)δ(j − k) + μf (j)δ(i− k) + μf (k)δ(i− j)) ,

where δ(·) is the Kronecker delta. Averaging over πf ,

R(i, j, k) :=E[xm(i)xm(j)xm(k)] =

F∑
f=1

πfμf (i)μf (j)μf (k)+

F∑
f=1

πfσ
2
f (μf (i)δ(j − k) + μf (j)δ(i− k) + μf (k)δ(i− j)) .

At this point, let us further assume, for simplicity, that σ2
f =

σ2, ∀f , and σ2 is known. Then
∑F

f=1 πfμf (i) = E[xm(i)]
can be easily estimated. So we may pre-compute the second

term in the above equation, call it Γ(i, j, k), and form

R(i, j, k)− Γ(i, j, k) =
F∑

f=1

πfμf (i)μf (j)μf (k),
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which is evidently a symmetric CPD model of rank (at most)

F . Note that, due to symmetry and the fact that πf ≥ 0, there

is no ambiguity regarding the sign of μf ; but we can still set

e.g., μ
′
1 = ρ

1
3μ1, π

′
1 = 1

ρπ1, π
′
2 = π1+π2−π

′
1 = ρ−1

ρ π1+π2,

1
γ =

π
′
2

π2
, and μ

′
2 = γ

1
3μ2, for some ρ > 0. However, we

must further ensure that π
′
2 > 0, and π

′
1 < π1 + π2; both

require ρ > π1

π1+π2
. We see that scaling ambiguity remains,

and is important to resolve it here, otherwise we will obtain

the wrong means and mixture probabilities. Towards this end,

consider lower-order statistics, namely E[xmxT
m] and E[xm].

Note that,

(M�M�M)π = ((MD1/3)�(MD1/3)�(MD1/3))D−1π

but

E[xm] = Mπ �= (MD1/3)D−1π,

E[xmxT
m]− σ̄2I = MDiag(π)MT

vec(·)→ (M�M)π �= ((MD1/3)� (MD1/3))D−1π.

This shows that no scaling ambiguity remains when we jointly

fit third and second (or third and first) order statistics. For the

general case, when the variances
{
σ2
f

}F

f=1
are unknown and

possibly different, see [131]. A simpler work-around is to treat

“diagonal slabs” (e.g., corresponding to j = k) as missing, fit

the model, then use it to estimate
{
σ2
f

}F

f=1
and repeat.

F. Topic modeling

Given a dictionary D = {w1, · · · , wI} comprising I possi-

ble words, a topic is a probability mass function (pmf) over

D. Assume there are F topics overall, let pf := Pr(wi|f) be

the pmf associated with topic f , πf be the probability that

one may encounter a document associated with topic f , and

π := [π1, · · · , πf ]
T . Here we begin our discussion of topic

modeling by assuming that each document is related to one and

only one topic (or, document “type”). Consider the following

experiment:

1) Draw a document at random;

2) Sample m words from it, independently, and at random

(with replacement – and the order in which words are drawn

does not matter);

3) Repeat (until you collect “enough samples” – to be qualified

later).

Assume for the moment that F is known. Your ob-

jective is to estimate {pf , πf}Ff=1. Clearly, Pr(wi) =∑F
f=1 Pr(wi|f)πf ; furthermore, the word co-occurrence prob-

abilities Pr(wi, wj) :=Pr(word i and word j are drawn from

the same document) satisfy

Pr(wi, wj) =

F∑
f=1

Pr(wi, wj |f)πf =

F∑
f=1

pf (i)pf (j)πf ,

since the words are independently drawn from the document.

Define the matrix of word co-occurrence probabilities P(2)

with elements P(2)(i, j) := Pr(wi, wj), and the matrix of

conditional pmfs C := [p1, · · · ,pF ]. Then

P(2) = CDiag(π)CT .

Fig. 7: 2-D probability simplex in 3-D space.

Next, consider “trigrams” – i.e., probabilities of triples of

words being drawn from the same document

Pr(wi,wj ,wk)=

F∑
f=1

Pr(wi,wj ,wk|f)πf =

F∑
f=1

pf (i)pf (j)pf (k)πf .

Define tensor P(3) with elements P(3)(i,j,k) :=Pr(wi,wj ,wk).
Then P(3) admits a symmetric non-negative CPD model of

rank (at most) F :

P(3) = (C�C�C)π.

Similar to12 Gaussian mixture parameter estimation, we can

estimate C and π from the tensor P(3) and the matrix P(2).

In reality, we will use empirical word co-occurrence counts

to estimate P(3) and P(2), and for this we need to sample

enough triples (“enough samples”). Once we have C, we can

classify any document by estimating (part of) its conditional

word pmf and comparing it to the columns of C.

Next, consider the more realistic situation where each

document is a mixture of topics, modeled by a pmf q (F ×1)
that is itself drawn from a distribution δ(·) over the (F − 1)-
dimensional probability simplex – see Fig. 7. Our working

experiment is now modified as follows.

1) For every document we sample, we draw q ∼ δ(·);
2) For every word we sample from the given document, we

first draw a topic t from q – i.e., topic f is selected with

probability q(f);

3) Next, we draw a word ∼ pt;

4) Goto 2, until you have sampled the desired number of words

(e.g., 3) from the given document;

5) Goto 1, until you have collected enough samples (e.g.,

enough triples).

Then,

Pr(wi, wj |t1, t2,q) = pt1(i)pt2(j) =⇒

Pr(wi, wj |q) =
F∑

t1=1

F∑
t2=1

pt1(i)pt2(j)q(t1)q(t2) =⇒

Pr(wi, wj) =

F∑
t1=1

F∑
t2=1

pt1(i)pt2(j)E [q(t1)q(t2)] ,

12But in fact simpler from, since here, due to sampling with replacement,
the same expression holds even if two or three indices i, j, k are the same.
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where we notice that what comes into play is the second-order

statistics E [q(t1)q(t2)] (the correlation) of δ(·). Likewise, it

follows that, for the trigrams, Pr(wi, wj , wk) =

F∑
t1=1

F∑
t2=1

F∑
t3=1

pt1(i)pt2(j)pt3(k)E [q(t1)q(t2)q(t3)] ,

which involves the third-order statistics tensor G of δ(·)
with elements G(i, j, k) := E [q(t1)q(t2)q(t3)]. Defining the

I×I×I tensor P with elements P(i, j, k) := Pr(wi, wj , wk),
it follows that P admits a symmetric Tucker decomposition,

P = Tucker(C,C,C,G), with C = [p1, · · · ,pF ]. Note

that C is element-wise non-negative, but in principle G may

have negative elements. As we know, Tucker models are

not identifiable in general – there is linear transformation

freedom. This can be alleviated when one can assume sparsity

in C [132], G, or both (intuitively, this is because linear

transformations generally do not preserve sparsity).

G. Multilinear discriminative subspace learning

Consider the following discriminative subspace learning
problem: given X = [x1, · · · ,xM ] (N × M ) and associated

class labels z = [z1, · · · , zM ] (1×M ) for the columns of X,

find a dimensionality-reducing linear transformation U of size

N × F , F < N (usually F � N ) such that

min
U|UTU=I

M∑
m=1

⎧⎨⎩(1− λ)

M∑
�=1|z�=zm

||UTxm −UTx�||22−

λ
M∑

�=1|z� �=zm

||UTxm −UTx�||22

⎫⎬⎭ ,

where the first (second) term measures the within-class

(across-class) distance in reduced dimension space. We are

therefore trying to find a dimensionality-reducing transforma-

tion that will map points close in terms of Euclidean distance

if they have the same class label, far otherwise. Another way

to look at it is that we are trying to find a subspace to project

onto where we can easily visualize (if F = 2 or 3) the point

clouds of the different classes. Upon defining

wm,� := (1− λ)1(z�=zm)(−λ)1−1(z�=zm),

where 1(z� = zm) = 1 if z� = zm, 0 otherwise, we can

compactly write the problem as follows

min
U|UTU=I

M∑
m=1

M∑
�=1

||UTxm −UTx�||22wm,�.

Expanding the squared norm and using properties of Tr(·), we

can write the cost function as

M∑
m=1

M∑
�=1

||UTxm −UTx�||22wm,� = Tr(UUTY),

where

Y :=
M∑

m=1

M∑
�=1

wm,�(xm − x�)(xm − x�)
T .

Notice that wm,� = w�,m by definition, and Y is symmetric.

Let Y = VΛVT be the eigendecomposition of Y, and note

that Tr(UUTY) = Tr(UTYU). Clearly, Uopt = F minor

eigenvectors of Y (columns of V corresponding to the F
smallest elements on the diagonal of Λ).

Now, suppose that the columns in X are in fact vectorized

tensors. As an example, suppose that there exist common bases

U (I × r1), V (J × r2), W (K × r3), such that

xm ≈ (U⊗V ⊗W)gm, ∀m ∈ {1, · · · ,M} ,
i.e., each xm can be modeled using a ⊥-Tucker model with

common mode bases, but different cores for different m. We

can think of (U⊗V⊗W)T (r1r2r3×IJK) as a (Kronecker)

structured dimensionality reducing transformation, and the

vectorized core array gm as the low-dimensional (r1r2r3× 1)

representation of xm. We want to find U, V, W such that

the g’s corresponding to x’s in the same (different) class are

close (far) from each other. Following the same development

as before, using

ĝm = (U⊗V ⊗W)Txm

as the projection of xm in reduced-dimension space, we arrive

at

min
U,V,W

Tr
(
(U⊗V ⊗W)(U⊗V ⊗W)TY

)
,

subject to: UTU = I, VTV = I, WTW = I,

or, equivalently,

min
U,V,W

Tr
(
((UUT )⊗ (VVT )⊗ (WWT ))Y

)
,

subject to: UTU = I, VTV = I, WTW = I,

from which it is clear that, conditioned on, say, U and V, the

update with respect to W boils down to

min
W|WTW=I

Tr
(
WWTZ

)
,

for some matrix Z that depends on the values of U and V.

See [133], [134] for more on the topic of multilinear subspace

learning.

The applications that we reviewed in some depth are by no

means exhaustive – there are a lot more success stories using

tensors for data mining and machine learning, e.g., for higher-

order web link analysis [135], and spotting misbehaviors in

location-based social networks [136]; see also [99].

X. SOFTWARE, DEMOS, HISTORY, AND WHAT LIES AHEAD

As we wrap up this admittedly long article, we would like to

point out some widely available resources that can help bring

the reader up to speed experimenting with tensors in minutes.

Matlab provides native support for tensor objects, but working

with tensors is facilitated by these freely available toolboxes:

1) The n-way toolbox http://www.models.life.ku.dk/

nwaytoolbox by Bro et al. [137], based on ALS (with

Gauss-Newton, line-search and other methods as an

option) incorporates many non-parametric types of con-

straints, such as non-negativity;
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2) The tensor toolbox http://www.sandia.gov/
∼tgkolda/TensorToolbox/index-2.6.html by Kolda et al.
[138], [139] was the first to provide support for sparse,

dense, and factored tensor classes, alongside standard

ALS and all-at-once algorithms for CPD, MLSVD, and

other factorizations;

3) Tensorlab http://www.tensorlab.net/ by De Lath-

auwer et al. [140], builds upon the complex optimization

framework and offers numerical algorithms for com-

puting CPD, MLSVD and more general block term

decompositions. It includes a library of constraints and

regularization penalties and offers the possibility to

combine and jointly factorize dense, sparse, structured

and incomplete tensors. It provides special routines for

large-scale problems and visualization.

4) SPLATT http://glaros.dtc.umn.edu/gkhome/splatt/

overview by Smith et al. is a high-performance

computing software toolkit for parallel sparse tensor

factorization. It contains memory- and operation-

efficient algorithms that allows it to compute PARAFAC

decompositions of very large sparse datasets. SPLATT

is written in C and OpenMP.

5) The TensorPackage http://www.gipsa-lab.fr/∼pierre.

comon/TensorPackage/tensorPackage.html by Comon et
al., which includes various algorithms for CPD and

employs enhanced line search [94].

While these toolboxes are great to get you going and for

rapid prototyping, when it comes to really understanding

what you’re doing with tensors, there is nothing as valuable

as programming ALS for CPD and ⊥-Tucker yourself, and

trying them on real data. Towards this end, we have produced

educational “plain-vanilla” programs (CPD-ALS, MLSVD, ⊥-

Tucker-ALS, CPD-GD, CPD-SGD), and simple but instruc-

tive demos (multichannel speech separation, and faces tensor

compression) which are provided as supplementary material

together with this article.
Tensor decomposition has come a long way since Hitchcock

’27, [141], Cattell ’44 [142], and later Harshman ’70-’72

[31], [32], Carroll and Chang [143], and Kruskal’s ’77 [35]

seminal papers. It is now a vibrant field that is well-represented

in major IEEE, ACM, SIAM, and other mainstream confer-

ences. The cross-disciplinary community that nurtured tensor

decomposition research during the years that it was a niche

area has two dedicated workshops that usually happen every

three years: the TRICAP (Three-way methods In Chemistry

and Psychology) workshop, which was last organized in

2015 at Pecol – Val di Zoldo (Belluno), Italy http://people.

ece.umn.edu/∼nikos/TRICAP home.html; and the TDA (Ten-

sor Decompositions and Applications) workshop, which was

last organized in 2016 at Leuven, Belgium http://www.esat.

kuleuven.be/stadius/TDA2016/.
In terms of opportunities and challenges ahead, we see the

need for more effective and tractable tensor rank detection

criteria, and flexible and scalable algorithms that can handle

very big datasets while offering identifiability, convergence,

and parameter RMSE performance guarantees – at least under

certain reasonable conditions. Data fusion, in the form of

coupled decomposition of several related tensors and matrices

is a very promising direction with numerous applications.

More broadly, we believe that machine learning offers a wide

range of potential applications, and this is one of the reasons

why we wrote this article. Tensor decomposition in higher rank

blocks is another interesting but relatively under-explored area

with many applications. Finally, using multilinear models such

as tensor trains as “universal approximants” has been gaining

traction and will continue to grow in the foreseeable future,

as a way to get away from the “curse of dimensionality”.
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[29] James Alexander and André Hirschowitz, “Polynomial interpolation in
several variables,” Journal of Algebraic Geometry, vol. 4, no. 2, pp.
201–222, 1995.
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