
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Fast Deep Neural Networks with
Knowledge Guided Training and
Predicted Regions of Interests for
Real-time Video Object Detection

WENMING CAO 1,2,(Member, IEEE), JIANHE YUAN 1, ZHIHAI HE 2, (Fellow, IEEE), ZHI

ZHANG 2, and ZHIQUAN HE 1 (Member, IEEE)
1
Shenzhen Key Laboratory of Media Security, Shenzhen University, China (e-mails: W. Cao: wmcao@szu.edu.cn, J. Yuan: jyuan1118@gmail.com, Z. He:

zhiquan@szu.edu.cn)
2
Video Processing and Communication Lab, Department of Electrical and Computer Engineering, University of Missouri, Columbia, MO, USA. (e-mails: Zhihai

He: hezhi@missouri.edu, Zhi Zhang: zzbhf@mail.missouri.edu)

Corresponding author: Zhiquan He (e-mail: zhiquan@szu.edu.cn).

This work was supported in part by Natioanl Natural Science Foundation of China, No.61771322,61375015, and in part by NSF under

grants US Ignite 1647213 and CyberSEES 1539389.

ABSTRACT It has been recognized that deeper and wider neural networks are continuously advancing

the state-of-the-art performance of various computer vision and machine learning tasks. However, they

often require large sets of labeled data for effective training and suffer from extremely high computational

complexity, preventing them from being deployed in real-time systems, for example vehicle object detection

from vehicle cameras for assisted driving. In this paper, we aim to develop a fast deep neural network

for real-time video object detection by exploring the ideas of knowledge-guided training and predicted

regions of interest. Specifically, we will develop a new framework for training deep neural networks on

datasets with limited labeled samples using cross-network knowledge projection which is able to improve

the network performance while reducing the overall computational complexity significantly. A large pre-

trained teacher network is used to observe samples from the training data. A projection matrix is learned to

project this teacher-level knowledge and its visual representations from an intermediate layer of the teacher

network to an intermediate layer of a thinner and faster student network to guide and regulate the training

process. To further speed up the network, we propose to train a low-complexity object detection using

traditional machine learning methods, such as Support Vector Machine (SVM). Using this low-complexity

object detector, we identify regions of interest that contain the target objects with high confidence. We obtain

a mathematical formula to estimate the regions of interest to save the computation for each convolution layer.

Our experimental results on vehicle detection from video demonstrated that the proposed method is able to

speed up the network by up to 16 times while maintaining the object detection performance.

INDEX TERMS Assisted driving, deep neural networks, knowledge projection, speed optimization, vehicle

detection.

I. INTRODUCTION

Deep learning and deep convolution neural network (DCNN)

has demonstrated its extraordinary performance on various

computer vision and machine learning tasks [1]–[4]. Recent

results on large datasets such as ImageNet [5] and MS CO-

CO [6] suggest that wider and deeper convolutional neural

networks tend to achieve better performance. These types of

networks often require large sets of labeled data for training

and involve high computational complexity. This poses sig-

nificant challenges for us to develop and deploy deep neural

networks in real-time systems, for example the advanced

driver-assistance systems (ADAS). As we know, real-time

systems and end devices, such as mobile phones, have limited

computational resources and memory bandwidth. Recently,

great efforts have been made to address the network speed

issue. A variety of model compression approaches [7]–[9]

VOLUME 4, 2016 1
Digital Object Identifier: 10.1109/ACCESS.2018.2795798

2169-3536 c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

have been proposed to obtain faster networks that mimic

the behavior of large networks. Another important issue in

practical applications is that we often have access to very

limited labeled samples. It is very expensive to obtain human

labeled ground-truth samples for training. In some applica-

tions domains, it is simply not feasible to accumulate enough

training examples for deep networks [10]–[12].

In this paper, we aim to develop a fast deep neural network

for real-time video object detection by exploring the ideas of

knowledge-guided training and predicted regions of interest.

Specifically, we will develop a new framework for train-

ing deep neural networks on datasets with limited labeled

samples using cross-network knowledge projection which is

able to improve the network performance while reducing

the overall computational complexity significantly. A large

pre-trained teacher network is used to observe samples from

the training data. A projection matrix is learned to project

this teacher-level knowledge and its visual representations

from an intermediate layer of the teacher network to an

intermediate layer of a thinner and faster student network to

guide and regulate the training process. We carefully design

the teacher-student architecture and joint loss function so that

the smaller student network can benefit from extra guidance

while learning towards specific task targets. Therefore, same

level performance can be achieved using a smaller network.

Besides the smaller and faster DCNN model, at the de-

tection side, we predict the salient local regions for objects

and design a fast framework of deep neural network which

is able to perform analysis on regions of interest to speed

up the detection process. Specifically, we propose to train

a low-complexity object detection using traditional machine

learning methods, such as Support Vector Machines (SVM)

[13]. Using this low-complexity object detector, we identify

regions of interest that contain the target objects with high

confidence. We obtain a mathematical formula to estimate

the regions of interest to save the computation for each con-

volution layer. Our experimental results on vehicle detection

from videos demonstrated that the proposed method is able

to speed up the network by up to 16 times while maintaining

the object detection performance.

The major contributions of this paper are summarized as

follows: (1) We propose a new architecture to transfer the

knowledge from a pre-trained large teacher network into a

thinner and faster student network to guide the training on a

smaller dataset. Our approach addresses the issues of network

adaptation and model compression at the same time. (2) We

have developed a fast method to determine the candidate re-

gions of interest which contain the target objects. (3) We have

established an analytic model to estimate the support regions

at each convolution layer and integrate this into the existing

object detection framework using deep convolutional neural

networks. (4) We have conducted extensive experiments to

demonstrate that our method is able to significantly reduce

the network computational complexity by 16 times while

largely maintaining the network performance by a significant

margin.

The rest of this paper is organized as follows. Related

work is reviewed in Section II. The overview of the pro-

posed method is provided in Section III. The knowledge-

guided training and projection matrix learning are presented

in Section IV. The proposed SSD-ROI method is explained

in Section V. Experimental results are presented in Section

VI. Finally, Section VII concludes this paper.

II. RELATED WORK

In this work, we focus on road object detection for advanced

driver-assistance systems (ADAS). Robust and reliable ve-

hicles and road objects detection in real-time is a critical

component in ADAS [14]. Active sensors, such as LIDAR,

millimeter wave radars, or lasers, have several drawbacks,

including low spatial resolution, slow scanning speed, and

high cost [15], [16]. Vision-based road object detection using

cameras offer a more affordable solution and can be used

to detect and track vehicles more accurately and effectively.

In traditional vision based vehicle detection methods, im-

age features and machine learning methods such as SVM

[17] are widely used. For example, Histogram of oriented

gradient (HOG) [18] features have been used in a number

of studies [19], [20]. Haar-like features are extensively used

in vehicle detection in a number of studies [16], [21]–[23]

as Haar-like features are found to be efficient for detecting

horizontal, vertical,and symmetric structures. SIFT features

[24] and hidden Conditional Random Field classification are

combined in [25].

Recently, methods have been developed detect vehicles

from videos or static images using deep convolution neural

networks [26]–[30]. For example, faster R-CNN [2] proposes

candidate regions and uses CNN to verify candidates as valid

objects. YOLO [4] uses end-to-end unified fully convolution-

al network (FCN) frameworks which predict the objectness

confidence and the bounding boxes simultaneously over the

whole image. SSD [3] outperforms YOLO by discretizing

the output space of bounding boxes into a set of default

boxes over different aspect ratios and scales per feature map

location. YOLO-2 [31] achieves start-of-art performance in

object detection by improving various aspects of its previous

version. The work in [26] uses a fully convolutional net-

work for object detetion from three dimensional (3D) range

scan data with LIDAR. Wang et al. proposes a 2D-DBN

architecture [32] which uses second-order planes instead of

first-order vectors as inputs and uses bilinear projection for

retaining discriminative information to improve the detection

rate.

Although DCNN based methods achieve the state-of-art

accuracy of detection or classification, they often require

intensive computation and large amount of labeled training

data. During the past few years, in order to deploy deep

neural network economically in real-time applications, a

significant amount of efforts have been put to address these

two problems [33], [34]. Our proposed method is closely

related to domain adaptation and model compression which

are reviewed in this section.

2 VOLUME 4, 2016

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Manually labeling the ground-truth training samples is

labor intensive and time consuming. In some application

domains, it is simply not feasible to do so. In these cases,

domain adaptation [10]–[12], [35] can be a powerful tool to

enable training a large network without over-fitting. Methods

for network domain adaptation [11], [36], [37] have been

developed to enable training on new domains with inadequate

labeled samples or even unlabeled data. Learning shallow

representation models is a promising approach to reduce

domain discrepancy. However, without deeply embedding

the adaptation in the feature space, the transferability of shal-

low features will be limited by the task-specific variability.

The work [38] embeds domain adaptations in deep learning

architecture and outperforms traditional methods by a large

margin. There are also some shallow architectures [39], [40]

in the context of learning domain-invariant features. Limited

by representation capacity of shallow architectures, the per-

formance of shallow networks are often inferior to that of

deep networks [37]. Within the context of deep feed-forward

neural networks, fine-tune is an effective and overwhelmingly

popular method [41], [42]. Feature transferability of deep

neural networks has been comprehensively studied in [43].

To address the issue of high computational complexity of

deep neural networks, researchers have designed smaller and

thinner networks from larger pre-trained networks. A typical

approach is to prune unnecessary parameters in trained net-

works while retaining similar outputs. Instead of removing

close-to-zero weights in the network, LeCunn et al. proposed

Optimal Brain Damage (OBD) [44] which uses the second

order derivatives to find trade-off between performance and

model complexity. Following work of Optimal Brain Surgeon

(OBS) [7] by Hassibi et al. outperformed the original OBD

method, but was more computationally intensive. Han et al.

[45] developed a method to prune state-of-art CNN models

without loss of accuracy. Based on this work, deep com-

pression [46] used ensembles of parameter pruning, trained

quantization and Huffman coding, and achieved 3 to 4 times

layer-wise speed up and reduced the size of VGG-16 [47] by

49 times. This line of work focuses on pruning unnecessary

connections and weights in trained models and optimizing

for better computation and storage efficiency.

Various factorization methods have also been proposed

to speed up the slow matrix operations commonly used to

optimize network performance. Jenderberg et al. [8] and

Denton et al. [48] use SVD-based low rank approximation.

Zhang et al. [49] successfully compressed VGG-16 [47] to

achieve 4 times speed up with 0.3% loss of accuracy based

on Generalized Singular Value Decomposition. Gong et al.

[50] used a clustering-based product quantization to reduce

the size of matrices by building an indexing. In contrast to

off-line optimization, Ciresan et al. [51] trained a sparse net-

work with random connections, providing good performance

with better computational efficiency than densely connected

networks.

Another line of work trains a smaller network from scratch

to mimic the behavior of a much larger network. Starting

FIGURE 1: Overview of the proposed system.

from the work of Bucila et al. [52] and Knowledge Dis-

tillation (KD) by Hinton et al. [9], the design of smaller

yet efficient networks has gained a lot of research interest.

It has been demonstrated in [9] that small networks can be

trained to generalize in the same way as large networks with

proper guidance. FitNets [53] achieved better compression

rate than knowledge distillation by designing a deeper but

much thinner network using trained models. Training deep

networks has proven to be challenging [54] Recently, adding

supervision to intermediate layers of deep networks is ex-

plored to assist the training process [55], [56]. These methods

assume that source and target domains are consistent. It is

still unclear whether the guided training is effective when the

source and target domains are significantly different.

In this paper, we consider a unique setting of the problem.

We use a large network pre-trained on a large dataset (e.g.

, the ImageNet) to guide the training of a thinner and faster

network on a new smaller dataset with limited labeled sam-

ples, involving adaptation over different data domains and

model compression at the same time. We also incorporate

pre-analysis using fast machine learning methods into the

existing deep convolutional neural network for fast object

detection.

III. OVERVIEW OF THE PROPOSED METHOD

Fig. 1 provides an overview of the proposed method. On

the training side, we develop a knowledge-guided framework

where a large teacher network pre-trained on a larget dataset

is used to guided the training of a small yet fast student

network. Specifically, as the teacher network is analyzing

the training image, the feature vector from one layer of

the teacher network is projected into the student network

to regulate its training process. The projection is performed

by a project matrix which is learning during training. Once

properly training, during the test stage, we first develop a fast

method to detect the regions of interest which will contain

the target object with high probability. We then integrate

the predicted regions of interest into the deep convolutional

neural networks to speed up the detection process.

IV. CROSS-NETWORK FEATURE PROJECTION FOR

KNOWLEDGE-GUIDED TRAINING

In this section, we present the proposed method of cross-

network feature projection for knowledge-guided training

(KGT). An example pipeline of knowledge-guided training

VOLUME 4, 2016 3

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

is illustrated in Fig. 2. Starting from a large teacher net-

work pre-trained on a large dataset, a student network is

designed to predict desired outputs for the target problem

with a certain level of guidance from the teacher network.

The student network aims to resemble the behavior of its

teacher. Being trained on a large dataset, the powerful teacher

network is able to learn and extract very effective visual

representation of the input images. In our knowledge-guided

training design, the teacher network and the student network

are examining the input image simultaneously. In the early

stage, visual features generated by the teacher network will

be more useful and effective than those from the student

network. We use the features from one specific middle layers

of the teacher network to guide the training process of the

student network. To this end, we propose to map the feature

FT of size N learned at one specific layer of the teacher

network into a feature vector FS of size M and inject it

into the student network to guide its training process. For the

mapping, we choose linear projection

FS = P · FT , (1)

where P is an N ×M matrix. In deep convolutional neural

networks, this linear projection matrix P can be learned by

constructing a convolution layer between the teacher and

student network. Specifically, we use a convolutional layer

to bridge teacher’s knowledge layer and student’s injection

layer. A knowledge layer is defined as the output of a

teacher’s hidden convolutional layer responsible for guiding

the student’s learning process by regularizing the output of

student’s injection convolutional layer.

To achieve reduced computational complexity, the student

network is designed to be thinner (in terms of feature map-

s) but deeper to effectively reduce network capacity while

preserves enough representation power [53], [57]. In our

knowledge-guided training, the student network is trained by

optimizing the following joint loss function:

W ∗
s ← arg min

Ws

(λ · LKP (Ws,Wk) + Lp(Ws) +R), (2)

where LKP and Lp are loss from the knowledge pro-

jection layer and problem specific loss, respectively. For

example, for the problem-specific loss, we can choose the

cross-entropy loss in many object recognition tasks. λ is the

weight parameter decaying during training, Wk is the trained

teacher network,R is a L2 regularization term, and W ∗
s is the

trained parameters in the student network. Unlike tradition-

al supervised training, the knowledge projection loss LKP

plays an important role in guiding the training direction of

KPN, which will be discussed in more detail in the following

section.

Let Ot
h, Ot

w and Ot
c be the spatial height, spatial width,

and number of channels of the knowledge layer output in

the teacher network, respectively. Let Os
h, Os

w and Os
c be

the corresponding sizes of student’s injection layer output,

respectively. Note that there are a number of additional layers

in the student network to further analyze the feature informa-

tion acquired in the inject layer and contribute to the final

network output. We introduce the following loss function:

LKP (Ws,Wk) = h[µ(x;Wk)]·|r[µ(x;Wk);WKP]− v[x;Ws]| ,
(3)

h(x) =

{

1, if x ≥ 0,

η, otherwise
(4)

where µ and v represent the deep nested functions (stacks of

convolutional operations) up to the knowledge and injection

layer with network parameters Wk and Ws, respectively. r[·]
is the knowledge projection function applied on µ[·] with

parameter WKP which is another convolution layer in this

work. µ, v and r must be comparable in terms of spatial

dimensionality.

The knowledge projection layer is designed as a convolu-

tional operation with a 1 × 1 kernel in the spatial domain.

As a result, WKP is a Ot
c × Os

c × 1 × 1 tensor. As a

comparison, a fully connected adaptation layer will require

Ot
h × Ot

w × Ot
c × Os

h × Os
w × Os

c parameters which is

not feasible in practice especially when the spatial size of

output is relatively large in the early layers. The output of the

knowledge projection layer will guide the training of student

network by generating a strong and explicit gradient applied

to backward path to the injection layer in the following form

∆Ws,i = −λ ·
∂LKP

∂Ws,i

, (5)

where Ws,i is the weight matrix of injection layer in student

network. Note that in (3), h[µ(x;Wk)] is applied toLKP with

respect to the hidden output of knowledge projection layer

as a relaxation term. For negative responses from µ(x;Wk),
LKP is effectively reduced by the slope factor η, which

is set to 0.25 by cross-validation. Overall, LKP acts as a

relaxed L1 loss. Compared to L2 loss, LKP is more robust

to outliers, but still has access to finer level representations in

r[µ(x;Wk);WKP].
In the student network, layers after the injection layer are

responsible for adapting the projected feature to the final

network output. This adaptation must be memorized through

out the training process. Those network layers before the

injection layer aim to learn distinctive low level features.

Therefore, in our KPN framework, the student network and

knowledge projection layer are randomized and trained in

two stages: initialization stage and end to end joint training

stage. In the initialization stage, path 2© in Fig. 2 is discon-

nected, i.e. the knowledge projection layer together with the

lower (after injection layer) part of student network is trained

to adapt the intermediate output of teacher’s knowledge layer

to the final target by minimizing Lp. The upper (before

injection layer) part of student network is trained sorely

by minimizing LKP . In this stage, we use the projection

matrix as an implicit connection between upper and lower

parts in the student network. The upper student network

layers are always optimized towards features interpreted by

4 VOLUME 4, 2016

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

3

32 64

1

1

96

192

256

16 16 32

64 64

128

192

100

10
Cross-entropy

loss

K nowledge

Projection with

64×96×1×1 kernel

64

L
K P

Forward path

Backward path 128

128-channel

output

Image

1

1

96

64

K nowledge

Projection L ayer

Teacher network

Student network

1

2

1

2

Conditional paths Gradients

FIGURE 2: KPN architecture. Solid arrows showing the forward data-flow, dotted arrows showing the paths for gradients.

the projection matrix, and have no direct access to targets.

This strategy prevents student network to over-fit quickly

during the early training stage which is very hard to correct

afterwards.

After the initialization stage, we then disconnect path 1©
and reconnect path 2©, the training now involves jointly

minimizing the objective function described in (2). Using the

results from stage 1 as the initialization, the joint optimiza-

tion process aims to establish smooth transitions inside the

student network from the input to the final output. The loss

LKP injected into student network continues to regularize

the training process. In this way, the student network is

trained based on a multi-loss function which has been used

in the literature to regulate deep networks [58].

V. DEEP CONVOLUTIONAL NEURAL NETWORK WITH

REGIONS OF INTEREST

In this section, we introduce the DCNN-ROI method which

predicts and incorporates regions of interest into the deep

convolutional neural network analysis framework for fast

object detection.

A. SALIENT REGION FOR OBJECT DETECTION

To detect an object in an image, SSD proposes a number

of bounding boxes and estimates the likelihood for the box

containing the target object. To estimate the salient region,

let’s simplify the model architecture and suppose the model

has k layers with filters (Fi, Si, Pi), 1 ≤ i ≤ k where

Fi, Si, Pi are the kernel size, stride and padding of each filter,

and each filter is followed by a pooling layer with size Di. For

a feature map with size Wi, filter i produces a new feature

map with size of Wi−Fi+2Pi

Si

+ 1. The subsequent pooling

operation will further reduce its size to 1/Di. So,

Wi+1 =
Wi − Fi + 2Pi + Si

SiDi

. (6)

We have

Wi = Wi+1 ∗ Si ∗Di − Si − 2Pi + Fi (7)

Based on this backward recursive formula, we can calculate

the minimum region containing all the information for the

object in input image.

B. FAST VEHICLE DETECTION WITH ROI PREDICTION

Besides the smaller and faster DCNN model, at the detection

side, we design a fast framework of deep neural network

which is able to perform analysis on regions of interest and

predict the salient local regions for vehicles to speed up the

detection process. In driving practice, we are interested in

the areas inside or close to the driving lane. As shown in

Fig. 3, we detect the lanes in the frame, propose a number

of potential candidate regions in the lane area. For each

candidate region, we extract histogram of oriented gradients

(HOG) features [18] and train a linear SVM model to assign

a probability score to each candidate region. The score is

the likelihood of the region containing a vehicle. We select

those candidate regions with score higher than a threshold

and combine them into a larger one. The combined region

is the estimated salient region we are interested in. When

testing a frame using SSD, the pixels outside the ROI region

is not involved in computation in each convolutional layer,

which speeds up the detection process.

VOLUME 4, 2016 5

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Lane DetectionImage Features

Multiple Candidate Regions
by SVM

Combine Candidate Regions

FIGURE 3: Framework of salient region of interest (ROI)

prediction.

VI. EXPERIMENTAL RESULTS

In this section, we perform comprehensive evaluations of

our proposed method using benchmark datasets. A large

dataset Dt is used to train the teacher network and a smaller

dataset Ds to train the student network. The large dataset is

often available from existing research efforts, for example,

the ImageNet. Both the large and the small datasets share

the following properties: 1) Image dimensions are same,

so that pre-trained models are compatible with each other

in terms of shape. 2) Training examples are similar while

class labels are different, which ensures transferred patterns

are implicitly learned. 3) Training examples are exclusive,

to make sure results are comparable. We use the existing

teacher network model already trained by other researchers

on the public dataset Dt. We compare various algorithms on

the benchmark dataset Ds where state-of-the-art results have

been reported. Performance reports on small datasets are

rare, thus we choose existing large well-known benchmark

datasets in following experiments, and aggressively reduce

the size of training set to simulate the shortage of labeled

data in real world scenarios.

A. NETWORK TRAINING

We build our KPN using the MXNet [59], a deep learning

framework designed for both efficiency and flexibility. The

dynamically generated computational graph in MXNet al-

lows us to modify network structures during run time. The

KPNs are trained on NVidia Titan X 12GB with CUDNN

v5.1 enabled. Batch-sizes vary from 16 to 128 depending on

the KPN group size. For all experiments, we train using the

Stochastic Gradient Descend (SGD) with momentum 0.9 and

weight decay 0.0001 except the knowledge projection layers.

The weight decay for all knowledge projection layers is 0.001

in the initialization stage and 0 for the joint training stage.

40% of iterations are used for the initialization stage, and

the rest goes to be joint training stage. The weight controller

parameter λ for joint loss is set to be 0.6, and gradually

decays to 0. The pruning frequency is 10000 and we also

randomly revoke the initialization stage during joint training

stage, to repetitively adjusting network guidance strength.

For fine-tuning, we test with a wide variety of experimental

settings. Starting from pre-trained networks, we adjust the

last layer to fit to the new dataset, and randomly initialize

the last layer. The reshaped network is trained with standard

back-propagation with respect to labels on the new dataset,

and unfreeze one more layer from the bottom one at a time.

The best result from all configurations was recorded. To

make sure all networks are trained using the optimal hyper-

parameter set, we extensively try a wide range of learning

rates, and repeat experiments on the best parameter set for at

least 5 times. The average performance of the best 3 runs out

of 5 will be reported. Data augmentation is limited to random

horizontal flip if not otherwise specified.

B. RESULTS ON THE CIFAR-10 DATASET

We evaluate the performance of our method on the CIFAR-

10 dataset guided by a teacher network pre-trained on a much

larger CIFAR-100 dataset. The CIFAR-10 and CIFAR-100

datasets [60] have 60000 32 × 32 color images with 10

and 100 classes, respectively. They are both split into 50K-

10K sets for training and testing. To validate our approach,

we train a 38-layer resnet on the CIFAR-100 as reported in

[61], and use it to guide a 50-layer but significantly slimmer

resnet on the CIFAR-10. Table 1 summarizes the results,

with comparisons against the state-of-the-art results. We do

not apply specific optimization techniques used in the state-

of-the-art methods due to some structures not reproducible

in certain conditions. To compare, we train a standard 38-

layer Residue Network, a 50-layer slimmer version of ResNet

(each convolutional layer is half the capacity of the vanilla

ResNet) and a fine-tuned model of 38-layer ResNet (from

CIFAR-100) on CIFAR-10 with different amount of training

samples. With all 50000 training data, our proposed method

outperforms direct training and best fine-tuning results and

still match the state-of-the-art performance. We believe the

performance gain specified in [62], [63] can be also applied

to our method, i.e. , ensemble of multiple techniques could

achieve better performance. The proposed KPN method has

improved the accuracy by up to 1.2% while significantly

reducing the network size by about 11 times, from 3.1M

network parameters to 273K parameters. It also demonstrates

strong robustness against aggressive reduction of labeled

training samples.

C. DETECTION WITH REGION OF INTEREST

We test the fast detection frame with region of interest on 6

videos and compare the detection performance in terms of

accuracy and time efficiency (seconds per frame) between

our method and original SSD. Vehicle detection with region

of interest needs less time than the original because the image

area outside of the ROI is not involved in the convolution.

To verify this, we select 200 frames, and for each frame, we

6 VOLUME 4, 2016

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 1: CIFAR-10 accuracy and network capacity com-

parisons with state-of-the-art methods. Results using ran-

domly sampled subsets from training data are also reported.

Number of network parameters are calculated based on re-

ports in related work.

Methods
Accuracy at # training samples

of params MultAdds
50000 5000 1000 500

Our methods

ResNet-50 slim 87.53 71.92 55.86 48.17 0.27M 31M

ResNet-38 90.86 75.28 61.74 51.62 3.1M 113M

ResNet-38 fine-tune 91.15 89.61 86.26 83.45 3.1M 113M

Our method 92.37 90.35 88.73 87.61 0.27M 31M

Methods Acc@50000 # of params MultAdds

State-of-the-art methods

Maxout [64] 90.62 9.0M 379M

FitNets-11 [53] 91.06 0.86M 53M

FitNets [53] 91.61 2.5M 107M

GP CNN [62] 93.95 3.5M 362M

ALL-CNN-C [65] 92.7 1.0M 257M

Good Init [63] 94.16 2.5M 166M

FIGURE 4: Average prediction time of different ROI size.

generate a set of ROIs with increasing sizes, starting from

the size of the ground truth bounding box. Fig. 4 shows the

average prediction time increasing with ROIs of increasing

sizes. When the ROI region is the entire frame, the prediction

time is same as the original one.

Table 2 shows the vehicle detection performance between

our SSD-ROI method and the original SSD. From the average

measures in the last row, we can see that SSD-ROI achieves

about 1.6 times faster than the original SSD (column 3

divided by column 5), while keeping the accuracy almost the

same. On the other hand, smaller models can speedup the

computation significantly. In Table 1, the speedup is more

than 10. So we have the last column in Table 2, which is the

speedup from ROI detection times the speedup from smaller

models. Fig. 5 shows several examples with the detection

accuracy gain and speedup, where accuracy gain is the IOU

score from SSD-ROI minus that from original SSD, and the

speedup is the time cost of original divided by the time

used by our method. From these figures, we can see that the

detection with ROI prediction is about 1.6 times faster than

the original. On the other hand, the detection accuracy is only

slightly affected by ROI prediction, as the ROI is applied as

a mask to SSD algorithm.

D. DISCUSSION AND FUTURE WORK

Our KPN is designed in a highly modular manner. The train-

ing of projection layers is removed during actutal network

testing, and the network capacity is highly configurable for

performance/speed trade-off. This KPN method can be easily

extended to other problems such as object detection, object

segmentation, and pose estimation by replacing softmax loss

layer used in the classification problems. Since the deployed

network is a pure standard network, another research di-

rection is to apply KPN as a building block in traditional

model compression techniques to reshape the network in a

new perspective. Although we have focused on the advantage

of KPN with thinner networks on smaller datasets, there

are potential benefits to apply KPN on large network and

relatively large datasets, for example, performance oriented

situations where speed is not an issue.

Detection of region of interest with a fast and low com-

plexity SVM model speeds up the vehicle detection about

1.6 times, while keeping the accuracy almost the same. With

the faster deep neural network, the overall performance can

speed up 16 times. Because SSD algorithm produces predic-

tions from feature maps of different scales, even though the

estimated ROI is good enough, the predicted bounding box

is not the same as the original one, but on the average, the

accuracy is almost the same, which can be seen from Table

2,

The estimation of salient region is crucial to the final

detection performance. From Fig. 5 and Eqn. 7, we can see

that if the margin on four sides between the estimated region

and the target object is not big enough, the detection accuracy

will be affected. For example, in Fig. 5 (d), the vehicle

is not well centered at the estimated region, which causes

the accuracy loss. One way to improve the salient region

estimation is to generate more candidate bounding boxes and

train a better SVM model. In future, we are also going to

extend our work to other deep learning frameworks.

VII. CONCLUSION

We have developed a novel knowledge projection framework

for deep neural networks the address the issues of domain

adaptation and model compression in training simultane-

ously. We exploit the distinctive general features produced

by the teacher network trained on large dataset, and use a

learned matrix to project them into domain relevant rep-

resentations to be used by the student network. A smaller

and faster student network is trained to minimize joint loss

designed for domain adaptation and knowledge distillation

simultaneously. Besides the smaller and faster DCNN model,

at the detection side, we have developed a fast method to

determine the candidate regions of interest which contain the

target objects and established an analytic model to compute

the support regions at each convolution layer and integrated

VOLUME 4, 2016 7

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 2: Vehicle detection performance comparison without GPU. ROI speedup is the speedup from ROI detection only,

which is column 3 divided by column 5. The overall speedup is the ROI speedup times the speedup from smaller models shown

in Table 1, which is about 10.

Original SSD SSD-ROI

Videos Accuracy Time (sec) Accuracy Time (sec) ROI Speedup Overall Speedup

video1 0.761 31.328 0.748 18.984 1.65 16.5

video2 0.651 31.47 0.65 20.286 1.55 15.5

video3 0.613 31.479 0.627 19.687 1.60 16

video4 0.554 31.31 0.55 19.528 1.60 16

video5 0.631 31.288 0.638 19.673 1.60 16

video6 0.631 30.817 0.627 22.466 1.37 13.7

Mean 0.669 31.318 0.667 19.847 1.58 15.8

this into the existing object detection framework using deep

convolution neural networks. Our experimental results on

vehicle detection from videos demonstrated that the proposed

method is able to speed up the network by up to 16 times

while maintaining the object detection performance.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification

with deep convolutional neural networks,” in Advances in neural informa-

tion processing systems, 2012, pp. 1097–1105.

[2] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time

object detection with region proposal networks,” in Advances in neural

information processing systems, 2015, pp. 91–99.

[3] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.

Berg, “Ssd: Single shot multibox detector,” in European Conference on

Computer Vision. Springer, 2016, pp. 21–37.

[4] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look

once: Unified, real-time object detection,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2016, pp. 779–

788.

[5] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “Im-

ageNet Large Scale Visual Recognition Challenge,” International Journal

of Computer Vision (IJCV), vol. 115, no. 3, pp. 211–252, 2015.

[6] T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick, J. Hays,

P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft COCO:

common objects in context,” CoRR, vol. abs/1405.0312, 2014. [Online].

Available: http://arxiv.org/abs/1405.0312

[7] B. Hassibi, D. G. Stork et al., “Second order derivatives for network prun-

ing: Optimal brain surgeon,” Advances in neural information processing

systems, pp. 164–164, 1993.

[8] M. Jaderberg, A. Vedaldi, and A. Zisserman, “Speeding up convolu-

tional neural networks with low rank expansions,” arXiv preprint arX-

iv:1405.3866, 2014.

[9] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural

network,” arXiv preprint arXiv:1503.02531, 2015.

[10] K. Zhang, B. Schölkopf, K. Muandet, and Z. Wang, “Domain adaptation

under target and conditional shift.” in ICML (3), 2013, pp. 819–827.

[11] X. Wang and J. Schneider, “Flexible transfer learning under support and

model shift,” in Advances in Neural Information Processing Systems,

2014, pp. 1898–1906.

[12] E. Tzeng, J. Hoffman, T. Darrell, and K. Saenko, “Simultaneous deep

transfer across domains and tasks,” in Proceedings of the IEEE Interna-

tional Conference on Computer Vision, 2015, pp. 4068–4076.

[13] C. Cortes and V. Vapnik, “Support vector machine,” Machine learning,

vol. 20, no. 3, pp. 273–297, 1995.

[14] Z. Sun, R. Miller, G. Bebis, and D. DiMeo, “A real-time precrash vehicle

detection system,” in Applications of Computer Vision, 2002.(WACV

2002). Proceedings. Sixth IEEE Workshop on. IEEE, 2002, pp. 171–176.

[15] W. D. Jones, “Building safer cars,” IEEE Spectrum, vol. 39, no. 1, pp.

82–85, 2002.

[16] I. EL JAAFARI, M. EL ANSARI, L. KOUTTI, A. ELLAHYANI, and

S. CHARFI, “A novel approach for on-road vehicle detection and track-

ing,” International Journal of Advanced Computer Science & Application-

s, vol. 1, no. 7, pp. 594–601.

[17] J. A. Suykens and J. Vandewalle, “Least squares support vector machine

classifiers,” Neural processing letters, vol. 9, no. 3, pp. 293–300, 1999.

[18] N. Dalal and B. Triggs, “Histograms of oriented gradients for human

detection,” in Computer Vision and Pattern Recognition, 2005. CVPR

2005. IEEE Computer Society Conference on, vol. 1. IEEE, 2005, pp.

886–893.

[19] W. Liu, X. Wen, B. Duan, H. Yuan, and N. Wang, “Rear vehicle detection

and tracking for lane change assist,” in Intelligent Vehicles Symposium,

2007 IEEE. IEEE, 2007, pp. 252–257.

[20] M. Cheon, W. Lee, C. Yoon, and M. Park, “Vision-based vehicle detection

system with consideration of the detecting location,” IEEE transactions on

intelligent transportation systems, vol. 13, no. 3, pp. 1243–1252, 2012.

[21] Z. Sun, G. Bebis, and R. Miller, “Monocular precrash vehicle detection:

Features and classifiers,” IEEE transactions on image processing, vol. 15,

no. 7, pp. 2019–2034, 2006.

[22] J. Cui, F. Liu, Z. Li, and Z. Jia, “Vehicle localisation using a single

camera,” in Intelligent Vehicles Symposium (IV), 2010 IEEE. IEEE,

2010, pp. 871–876.

[23] S. Sivaraman and M. M. Trivedi, “Active learning based robust monocular

vehicle detection for on-road safety systems,” in Intelligent Vehicles

Symposium, 2009 IEEE. IEEE, 2009, pp. 399–404.

[24] D. G. Lowe, “Object recognition from local scale-invariant features,” in

Computer vision, 1999. The proceedings of the seventh IEEE international

conference on, vol. 2. Ieee, 1999, pp. 1150–1157.

[25] X. Zhang, N. Zheng, Y. He, and F. Wang, “Vehicle detection using

an extended hidden random field model,” in Intelligent Transportation

Systems (ITSC), 2011 14th International IEEE Conference on. IEEE,

2011, pp. 1555–1559.

[26] B. Li, T. Zhang, and T. Xia, “Vehicle detection from 3d lidar using fully

convolutional network,” arXiv preprint arXiv:1608.07916, 2016.

[27] Z. Dong, Y. Wu, M. Pei, and Y. Jia, “Vehicle type classification using

a semisupervised convolutional neural network,” IEEE Transactions on

Intelligent Transportation Systems, vol. 16, no. 4, pp. 2247–2256, 2015.

[28] X. Chen, S. Xiang, C.-L. Liu, and C.-H. Pan, “Vehicle detection in satellite

images by hybrid deep convolutional neural networks,” IEEE Geoscience

and remote sensing letters, vol. 11, no. 10, pp. 1797–1801, 2014.

[29] ——, “Vehicle detection in satellite images by parallel deep convolutional

neural networks,” in Pattern Recognition (ACPR), 2013 2nd IAPR Asian

Conference on. IEEE, 2013, pp. 181–185.

[30] Y.-K. Park, J.-K. Park, H.-I. On, and D.-J. Kang, “Convolutional neural

network-based system for vehicle front-side detection,” Journal of Institute

of Control, Robotics and Systems, vol. 21, no. 11, pp. 1008–1016, 2015.

[31] J. Redmon and A. Farhadi, “Yolo9000: Better, faster, stronger,” arXiv

preprint arXiv:1612.08242, 2016.

[32] H. Wang, Y. Cai, and L. Chen, “A vehicle detection algorithm based on

deep belief network,” The scientific world journal, vol. 2014, 2014.

[33] K. Kim, S. Lee, J.-Y. Kim, M. Kim, and H.-J. Yoo, “A configurable

heterogeneous multicore architecture with cellular neural network for real-

time object recognition,” IEEE Transactions on Circuits and Systems for

Video Technology, vol. 19, no. 11, pp. 1612–1622, 2009.

8 VOLUME 4, 2016

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

(a) Accuracy gain: 0.072, speedup: 1.773. (b) Accuracy gain: 0.131, speedup: 1.675.

(c) Accuracy gain: -0.046, speedup: 1.567. (d) Accuracy gain: -0.068, speedup: 1.582.

FIGURE 5: Compare original SSD and SSD-ROI in terms of accuracy gain (IOU score of SSD-ROI minus that of original

SSD) and speedup (time cost used by original SSD divided by that of SSD-ROI). Colors of bounding boxes: green: ROI region,

red: ground truth, yellow: predicted by original SSD, blue: predicted by SSD-ROI.

[34] N. Sudha, A. Mohan, and P. K. Meher, “A self-configurable systolic

architecture for face recognition system based on principal component

neural network,” IEEE transactions on circuits and systems for video

technology, vol. 21, no. 8, pp. 1071–1084, 2011.

[35] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, “Domain adaptation

via transfer component analysis,” IEEE Transactions on Neural Networks,

vol. 22, no. 2, pp. 199–210, 2011.

[36] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions

on knowledge and data engineering, vol. 22, no. 10, pp. 1345–1359, 2010.

[37] M. Long, Y. Cao, J. Wang, and M. I. Jordan, “Learning transferable

features with deep adaptation networks.” in ICML, 2015, pp. 97–105.

[38] Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by back-

propagation,” arXiv preprint arXiv:1409.7495, 2014.

[39] H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, and M. Marchand,

“Domain-adversarial neural networks,” arXiv preprint arXiv:1412.4446,

2014.

[40] M. Ghifary, W. B. Kleijn, and M. Zhang, “Domain adaptive neural net-

works for object recognition,” in Pacific Rim International Conference on

Artificial Intelligence. Springer, 2014, pp. 898–904.

[41] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional

networks,” in European conference on computer vision. Springer, 2014,

pp. 818–833.

[42] M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Learning and transferring

mid-level image representations using convolutional neural networks,”

in Proceedings of the IEEE conference on computer vision and pattern

recognition, 2014, pp. 1717–1724.

[43] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are

features in deep neural networks?” in Advances in neural information

processing systems, 2014, pp. 3320–3328.

[44] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in

Advances in Neural Information Processing Systems 2, D. S. Touretzky,

Ed. Morgan-Kaufmann, 1990, pp. 598–605. [Online]. Available:

http://papers.nips.cc/paper/250-optimal-brain-damage.pdf

[45] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and con-

nections for efficient neural network,” in Advances in Neural Information

Processing Systems, 2015, pp. 1135–1143.

[46] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep

neural networks with pruning, trained quantization and huffman coding,”

arXiv preprint arXiv:1510.00149, 2015.

[47] K. Simonyan and A. Zisserman, “Very deep convolutional networks for

large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[48] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus, “Exploiting

linear structure within convolutional networks for efficient evaluation,”

in Advances in Neural Information Processing Systems, 2014, pp. 1269–

1277.

[49] X. Zhang, J. Zou, K. He, and J. Sun, “Accelerating very deep convolutional

networks for classification and detection,” IEEE transactions on pattern

analysis and machine intelligence, vol. 38, no. 10, pp. 1943–1955, 2016.

[50] Y. Gong, L. Liu, M. Yang, and L. Bourdev, “Compressing deep con-

volutional networks using vector quantization,” arXiv preprint arX-

iv:1412.6115, 2014.

[51] D. C. Cireşan, U. Meier, J. Masci, L. M. Gambardella, and J. Schmidhuber,

“High-performance neural networks for visual object classification,” arXiv

preprint arXiv:1102.0183, 2011.

VOLUME 4, 2016 9

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

[52] C. BuciluÇŐ, R. Caruana, and A. Niculescu-Mizil, “Model compression,”

in Proceedings of the 12th ACM SIGKDD international conference on

Knowledge discovery and data mining. ACM, 2006, pp. 535–541.

[53] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Bengio,

“Fitnets: Hints for thin deep nets,” arXiv preprint arXiv:1412.6550, 2014.

[54] D. Erhan, P.-A. Manzagol, Y. Bengio, S. Bengio, and P. Vincent, “The

difficulty of training deep architectures and the effect of unsupervised pre-

training.” in AISTATS, vol. 5, 2009, pp. 153–160.

[55] C.-Y. Lee, S. Xie, P. W. Gallagher, Z. Zhang, and Z. Tu, “Deeply-

supervised nets.” in AISTATS, vol. 2, no. 3, 2015, p. 5.

[56] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in

Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2015, pp. 1–9.

[57] J. Ba and R. Caruana, “Do deep nets really need to be deep?” in Advances

in neural information processing systems, 2014, pp. 2654–2662.

[58] C. Xu, C. Lu, X. Liang, J. Gao, W. Zheng, T. Wang, and S. Yan, “Multi-

loss regularized deep neural network,” IEEE Transactions on Circuits and

Systems for Video Technology, vol. 26, no. 12, pp. 2273–2283, 2016.

[59] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. X-

u, C. Zhang, and Z. Zhang, “Mxnet: A flexible and efficient machine

learning library for heterogeneous distributed systems,” arXiv preprint

arXiv:1512.01274, 2015.

[60] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from

tiny images,” Master’s thesis, Department of Computer Science, Universi-

ty of Toronto, 2009.

[61] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2016, pp. 770–778.

[62] C.-Y. Lee, P. W. Gallagher, and Z. Tu, “Generalizing pooling functions in

convolutional neural networks: Mixed, gated, and tree,” in International

conference on artificial intelligence and statistics, 2016.

[63] D. Mishkin and J. Matas, “All you need is a good init,” arXiv preprint

arXiv:1511.06422, 2015.

[64] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. C. Courville, and Y. Ben-

gio, “Maxout networks.” ICML (3), vol. 28, pp. 1319–1327, 2013.

[65] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving

for simplicity: The all convolutional net,” arXiv preprint arXiv:1412.6806,

2014.

10 VOLUME 4, 2016

