
C. WANG: RL-BASED ADAPTIVE TRANSMISSION IN TIME-VARYING UWA CHANNELS 1

Reinforcement Learning-based Adaptive

Transmission in Time-Varying Underwater Acoustic

Channels
CHAOFENG WANG, ZHAOHUI WANG, Member, IEEE, WENSHENG SUN, AND DANIEL R. FUHRMANN,

Fellow, IEEE

Abstract—This work studies adaptive transmission in an un-
derwater acoustic (UWA) point-to-point communication system
that operates on an epoch-by-epoch basis for a long term. A fixed
amount of information bits periodically arrive at the transmitter
data queue, and wait for transmission via a number of packets
within each epoch. To trade off energy consumption with trans-
mission latency, the transmitter decides the transmission action
at the beginning of each epoch, including to transmit or not, the
transmission power and the modulation-and-coding parameters,
based on the data queue status and the predicted channel
conditions in the current and future epochs. To describe both
the fast fading and the large-scale shadowing of UWA channels,
the channel within each epoch is characterized by a compound
Nakagami-lognormal distribution, and the evolution of the dis-
tribution parameters is modeled as an unknown Markov process.
Given that the channel can only be observed during active
transmissions, we formulate the adaptive transmission problem
as a partially observable Markov decision process (POMDP),
and develop an online algorithm in a model-based reinforcement
learning (RL) framework. The algorithm recursively estimates
the channel model parameters, tracks the channel dynamics,
and computes the optimal transmission action that minimizes
a long-term system cost. Emulated results based on channel
measurements from two field experiments demonstrate that the
proposed algorithm achieves decent performance relative to a
benchmark method that assumes perfect and non-causal channel
knowledge.

Index Terms—Adaptive transmission, underwater acoustic
channels, energy efficiency, model-based reinforcement learning.

I. INTRODUCTION

UNDERWATER acoustic (UWA) communication is the

key technique for wireless information transfer in a

wide range of aquatic applications, such as ocean observation,

ecosystem health monitoring, and tactical surveillance [1].

Due to the high deployment cost, the lifespan of underwater

systems varies from months to years. For instance, underwater

monitoring systems, such as scientific data collection systems,

could be mounted at the water bottom for months to collect

parameters of interest, and large-scale ocean observation sys-

tems, such as the NEPTUNE and VENUS ocean observatories

[2] and the Ocean Observatory Initiative (OOI) [3], could have

projected lifespans of more than 20 years. On the other hand,
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underwater nodes are often powered by batteries, and battery

replacement and recharging are time-consuming and costly.

Energy-efficient operation is critical for system longevity.

This work considers a long-term operating underwater

system with deterministic data arrivals (e.g., periodic data

collection systems), and studies energy-efficient acoustic trans-

mission that adapts the transmission schedule and the trans-

mission parameters, including the transmission power and

the modulation-and-coding parameters, to the system state

(e.g., the transmitter data queue length) and the current and

future predicted channel conditions, with a goal of minimizing

a long-term average cost. The UWA channel exhibits both

small-scale fast fading and long-term large-scale shadowing.

Adapting transmission strategy to the channel dynamics could

yield considerable energy saving.

The channel-aware transmission to trade off energy con-

sumption with information delivery latency has been exten-

sively studied in terrestrial radio communications. Particularly

for correlated fading channels, most of existing works model

the channel as a finite-state Markov chain (FSMC) with

known transitional probabilities, and formulate the problem as

a Markov Decision Process (MDP) to determine the control

variables, such as the transmission schedule, the transmission

power, and the modulation-and-coding parameters, based on

the channel state and the communication system state (e.g.,

the data queue length, the incoming traffic rate, and the packet

delay constraint). Given that the MDP is generally computa-

tionally intractable to solve, special structures of the optimal

policy are identified and exploited to find the optimal or near-

optimal solution [4]–[7]. However, the channel state transition

probability and the traffic statistics could be hard to obtain

in practice. Some works propose to solve the MDP online

using reinforcement learning (RL) [8], where model-free RL

methods (e.g., Q-learning, and the actor-critic algorithm) are

used to learn from past experiences (namely, how to map “situ-

ations” to “actions”) without explicit modeling of the channel

and/or traffic dynamics [9]–[13]. Recent applications of RL

in radio-frequency networks include stochastic power control

for energy harvesting systems [14], [15], data scheduling and

admission control for backscatter sensor networks [16], and

rate and mode adaptation for Wi-Fi/LTE-U coexistence [17].

Compared to radio networks, studies on energy-efficient

transmission in UWA networks have been limited. At the

physical layer, relevant research includes adapting the trans-

mission power, the frequency band, and the modulation-and-
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coding parameters to channel dynamics [18]–[21]. At the link

layer, assuming a two-state FSMC channel model with known

transition probabilities and accounting the non-negligible cost

of channel probing, energy-efficient transmission scheduling

with partial and discontinuous channel state information (CSI)

is studied in [22]. The transmission scheduling is formulated

as a dynamic programming problem, and different ways of

providing the CSI from the receiver are examined. The above

work is extended in [23] when only partial data queue state

information is available. In [24], the RL is introduced to

optimize the parameters in a slotted Carrier Sensing Multiple

Access (slotted CSMA) protocol. Assuming a binary symmet-

ric channel (BSC) with unknown transition probabilities, the

model-free RL (Q-learning augmented by virtual experience

and state-action aggregation) was introduced in [25] to adapt

the link-layer transmission schedule and transmission param-

eters to the channel dynamics. Q-learning has also been used

for designing routing protocols [26] with an aim to balance the

workload among network nodes and to prolong the network

lifetime.

For long-term operating underwater systems, the UWA

channel exhibits both fast fading and large-scale shadowing;

see field experiment observations in, e.g., [27]–[29]. Data anal-

ysis of different field experiments revealed that the fast fading

could follow Rayleigh, Rician, Nakagami-m, or compound-

K distributions; see [30] and references therein. Based on

field measurements, a lognormal model was suggested for

large-scale shadowing [31], [32]. Furthermore, the fading and

shadowing statistics could change continuously over time; for

instance, channel stationarity over an average of three-minute-

long interval [33], nonstationarity and cyclostationarity [30]

have been observed in different field experiments.

Existing solutions with the FSMC channel model assump-

tion may not work well for adaptive transmission in long-

term operating UWA systems. Specifically, the large channel

dynamics require a sufficient number of discrete channel

states for an adequate description of the channel behavior.

Additionally, the FSMC parameters could change continuously

over time. The high-dimensionality of the channel state space

and the short-term channel stationarity could prevent model-

free RL methods from convergence, which eventually leads to

degraded performance.

In this work, we introduce a continuous channel model

to describe the temporal dynamics of UWA channels, and

adopt a model-based RL framework to determine the trans-

mission strategy with the aim of optimizing a long-term

system performance measure. Specifically, to better capture the

channel variation over a long term, we introduce a compound

Nakagami-lognormal distribution to characterize the channel

fast fading and the large-scale shadowing, and model the

evolution of the distribution parameters as a first-order Markov

process. Based on the above channel model, the model-based

RL framework is employed for adaptive transmission. The

framework has two components: channel model estimation and

online planning. Following the maximum likelihood principle

and the expectation-maximization concept [34], an algorithm

is developed to recursively estimate the channel model param-

eters and predict the channel state based on newly obtained

channel measurements. The online planning is then performed

via a Monte Carlo sampling method which finds a near-optimal

transmission strategy through constructing an online state-

action tree.

The proposed algorithms are validated using data sets

collected from two experiments, one held off the coast of

Martha’s Vineyard, Massachusetts, in 2008, and the other

held in the ice-covered Keweenaw Waterway near Michigan

Tech, Michigan, in 2014. The experimental results show that:

1) the recursive channel estimation method yields decent

performance on tracking the UWA channel dynamics; and

2) the model-based RL algorithm achieves performance close

to a genie-aided method that assumes perfect and non-causal

channel knowledge.

To the best of our knowledge, this is the first attempt

that adopts the model-based RL framework for adaptive

transmission in long-term operating UWA systems, where

the channel statistical parameters in continuous spaces are

explicitly learned from past transmissions.

The rest of the paper is organized as follows. The sys-

tem model is presented in Section II. The model-based RL

algorithm for adaptive transmission is developed in Section

III. The Monte Carlo sampling method for online planning

is presented in Section IV. A recursive algorithm for channel

model estimation and channel tracking is described in Section

V. Evaluation of the proposed algorithm is included in Section

VI. Conclusions are drawn in Section VII.

Notation: Bold upper case letters and lower case letters

are used to denote matrices and column vectors, respectively.

A
T denotes the transpose of matrix A. [a]m denotes the mth

element of vector a. |A| denotes the cardinality of set A. ∇a

denotes the derivative w.r.t. a.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Description

This work focuses on adaptive transmission in a long-term

operating UWA point-to-point data transmission system. The

time is divided into epochs as shown in Fig. 1. Each epoch

consists of N time slots, and each time slot is used to transmit

one data packet. At the end of the epoch, an acknowledgement

packet is sent from the receiver through an error-free channel

to the transmitter, which includes information of the packets

that are successfully delivered and the received signal-to-noise

ratio (SNR) of each packet. We further assume that at the

transmitter, a fixed amount of information bits are generated

at the application layer in each epoch and arrive at the data

queue of the transmitter at the beginning of an epoch. The

transmission schedule and the transmission parameters will

be determined recursively epoch by epoch based on the data

queue state and information about the channel state, with an

ultimate goal of minimizing a long-term system cost.

For each time epoch, the transmission parameters include

the transmission power, the modulation size and the chan-

nel coding rate. Note that the acoustic modem in practical

systems only maintains a finite number of modulation and

coding pairs as well as a finite number of transmission power

levels. We consider a finite set of discrete power levels
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Fig. 1. Epoch structure at the transmitter and the receiver. The transmission parameters, including the transmission power, the modulation size and the channel
coding rate, could vary from epoch to epoch.

P = {P0, P1, P2, · · · }, with P0 = 0 for no transmission, a

finite set of discrete modulation sizes M = {M1,M2, · · · },
and a finite set of channel coding rates Rc = {rc,1, rc,2, · · · }.
A combination of the modulation size Mi and the coding rate

rc,j yields a data rate of rc,j · log2 Mi. Stack the triplet of

transmission parameters {P ∈ P,M ∈ M, rc ∈ Rc} into

a vector, a := [P,M, rc]
T. Denote a(ℓ) as the transmission

parameter vector in the ℓth epoch.

In the next, we will develop an UWA channel model

and an evolution model of the transmitter data queue, and

then formulate the adaptive transmission as an optimization

problem.

B. Underwater Acoustic Channel Model

To model both the fast fading and the large-scale shadowing

of UWA channels, the UWA channel within one epoch is sta-

tistically characterized via a compound Nakagami-lognormal

distribution. Accordingly, the received SNR follows a gamma-

lognormal distribution [35]. Denote ρ := Ptx/N0 as the trans-

mission signal-power-to-noise ratio in an epoch, and denote x
as the corresponding received SNR. The probability density

function (PDF) of x can be expressed as

fX(x;m,µ, σ) =

∫ ∞

0

xm−1 exp
(

−mx
ρy

)

Γ(m)

×
(
m

ρy

)m
1√
2πσy

exp

[

− 1

2σ2
(ln y − µ)2

]

dy, (1)

where Γ(·) is the gamma function, m ∈ [1/2,∞) is the

fading parameter in the Nakagami-m fading, and µ and σ
are the mean and the standard deviation of the lognormal

shadowing, respectively [35]. Therefore, the UWA channel can

be statistically parameterized by the triplet {m,µ, σ}.
Define sch := [m,µ, σ]T, and denote sch(ℓ) as the channel

state in the ℓth epoch. We model the long-term channel

temporal variation as a first-order Markov process,

sch(ℓ) = Asch(ℓ− 1) +wch(ℓ), (2)

where A is a 3 × 3 unknown matrix, and wch(ℓ) is the

process noise vector for modeling inaccuracy, and is assumed

following a zero-mean Gaussian distribution with an unknown

covariance matrix Cw, namely, wch(ℓ) ∼ N (0,Cw).
The UWA channel in an epoch can be measured during

packet transmissions. We assume that the receiver can measure

the received SNR of each packet even if the packet cannot

be successfully decoded. The collected received SNR mea-

surements are piggybacked on the acknowledgement packet

sent from the receiver to the transmitter at the end of each

active epoch. Denote {xℓ,1, xℓ,2, · · · , xℓ,N} as the received

SNRs of N packets in the ℓth epoch. Given the knowledge

of the transmission SNR ρ(ℓ), the channel statistical parame-

ters, {m(ℓ), µ(ℓ), σ(ℓ)}, can be estimated via the method of

moments [34] according to (1).

We denote zch(ℓ) as the vector stacked by the estimated

parameters, {m̂(ℓ), µ̂(ℓ), σ̂(ℓ)}, and take zch(ℓ) as the obser-

vation vector of sch(ℓ). Hence,

zch(ℓ) = sch(ℓ) + vch(ℓ), (3)

where vch(ℓ) ∼ N (0,Cv) is the observation noise with an

unknown covariance matrix Cv, and is assumed independent

from the process noise wch(ℓ).
The channel model can then be uniquely represented by the

unknown parameter set Θ := {A,Cw,Cv}. Due to the water

environment dynamics, the parameter set could be slowly time-

varying.

Remark 1: For the epochs without active transmissions, a

channel probing sequence could be transmitted to collect infor-

mation about the channel dynamics. Although this work does

not consider the probing sequence, the obtained theoretical

results can be applied with slight modification to the scenario

with channel probing sequences.

C. Evolution of the Data Queue

For each transmission parameter triplet a = [P,M, rc]
T,

the packet error rate (PER) can be determined based on

the compound distribution of the received SNR using an

information-theoretic approach [36], [37] or an empirical

formula estimated by real data [20]. For a channel state sch

and a transmission parameter vector a, we denote the PER by

function PER(sch,a).
At the beginning of epoch ℓ, the data queue length can be

recursively represented as

q(ℓ) = q(ℓ− 1)− r(ℓ− 1)Ns(ℓ− 1) + rg, (4)

where r(ℓ−1) is the amount of information bits carried by each

packet according to the transmission parameter vector a(ℓ−1),
Ns(ℓ − 1) is the number of packets that are successfully
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delivered to the receiver in epoch (ℓ − 1), and rg is the

amount of information bits from the application layer arriving

at the beginning of epoch ℓ. Given PER(sch,a), the number

of packets that can be successfully received follows a binomial

distribution B(N, 1− PER(sch,a)), namely,

Pr(Ns = k|sch,a) =
(
N

k

)

(1− PER(sch,a))
k
(PER(sch,a))

N−k
. (5)

Therefore, given the channel state sch(ℓ−1) and the transmis-

sion parameter vector a(ℓ− 1), the probability distribution of

Ns(ℓ− 1), and the transition probability from q(ℓ− 1) to q(ℓ)
can be determined.

D. Problem Formulation for Optimal Transmission

We define the system state of epoch ℓ as s(ℓ) :=
{sch(ℓ), q(ℓ)} ∈ S , ∀ℓ = 0, · · · ,∞. The transmission vector

in each epoch, {a(ℓ) ∈ A, ∀ℓ}, can be determined to minimize

the expected total discounted cost,

min
{a(ℓ)∈A}∞

ℓ=0

E

{
∞∑

ℓ=0

γℓC(s(ℓ),a(ℓ))

}

, (6)

where γ ∈ (0, 1] is a discount factor, and the cost function

C(s,a) : S × A → R is application-dependent, and can be

defined by the system designer. In this work, we take the cost

function as

C(s(ℓ),a(ℓ)) = fp
(
P (ℓ)

)
+ fq

(
q(ℓ)− r(ℓ)Ns(ℓ)

)
, ∀ ℓ (7)

where fp(·) and fq(·) are two generic functions that are related

to the energy consumption and the queue length, respectively,

(q(ℓ) − r(ℓ)Ns(ℓ)) is the queue length at the end of epoch

ℓ, and the number of successfully delivered packets Ns(ℓ)
depends on the channel state sch(ℓ) and the action a(ℓ). We

note that the cost function C(s(ℓ),a(ℓ)) is a random variable

due to the randomness of the channel state sch(ℓ) and the

number of successfully delivered packets Ns(ℓ).

III. REINFORCEMENT LEARNING-BASED ADAPTIVE

TRANSMISSION

The optimization problem in (6) falls into the category

of reinforcement learning (RL) [38], where the transmitter

(a.k.a. an agent in RL) interacts with the stochastic and

dynamic UWA channel, with a goal of finding an optimal

transmission strategy that minimizes the system long-term

cost. In this section, we will reformulate the optimization

problem in (6) in the model-based RL framework, and provide

an overview of the proposed algorithm for online adaptive

transmission. For notation convenience, we include the epoch

index ℓ as a subscript.

A. Optimality for RL-based Adaptive Transmission

Should the system state be completely observable, the

optimal transmission strategy can be determined by solving

the Bellman optimality equation (BOE),

V ∗(s) = min
a∈A

[

C(s,a) + γ

∫

S

p(s′|s,a)V ∗(s′)ds′
]

, (8)

where V ∗(s) is referred to as the optimal value function of

state s, and p(s′|s,a) is the state transition probability after

taking action a. The minimand in (8) consists of two terms:

one is the cost of taking action a at the current state s, and the

other is the expected cost in the successor states after taking

action a. In the problem under consideration, although the

queue state can be completely observed, the UWA channel

cannot be directly observed, especially in epochs with no

transmissions. The interaction between the transmitter and the

underwater channel can be modeled as a partially observable

Markov Decision process (POMDP) [38].

We define b(sch,ℓ) as the belief of channel state sch,ℓ,

which corresponds to a priori PDF of state sch,ℓ, and can be

inferred based on past observations {zch,ℓ′ ; ℓ′ < ℓ}. Consider

zch,ℓ ∈ Z, ∀ℓ, with the empty set Φ ∈ Z to represent the

scenario without active transmissions, and qℓ ∈ Q, ∀ℓ. To

indicate the dependence of the value function on the channel

model, we include the model parameter set Θ in the value

function representation. The BOE in (8) can be reformulated

as in (9) where qℓ, qℓ+1, Ns,ℓ and a are related according to

(4). Similar to (8), the minimand in (9) has two terms: the first

term is the expected cost in the current epoch based on the

current channel belief state and action, and the second term

is the expected cost in future epochs. The optimal action in

the current epoch is the one that minimizes the total expected

cost in the current and future epochs.

We next discuss the probability functions in (9) for two

types of actions.

• For the actions leading to packet transmissions, namely,

[a]1 6= 0 (c.f. Section II), the probability functions in (9)

can be determined based on (2), (3) and (4). The channel

state belief b(sch,ℓ+1) can be recursively updated as

b(sch,ℓ+1) ∝
∫

S

f(sch,ℓ+1|sch,ℓ)

× f(zch,ℓ|sch,ℓ,a)b(sch,ℓ)dsch,ℓ. (10)

• For the action of no transmission, namely, [a]1 = 0, we

have zch,ℓ ∈ Φ. The probability function f(zch,ℓ|sch,ℓ,a)
is non-informative and is independent of sch,ℓ, hence
∫

Z
f(zch,ℓ|sch,ℓ,a)dzch,ℓ = 1. Therefore, the integral

w.r.t. zch,ℓ in the second summand of (9) can be separated

from the double integral and be removed. Furthermore,

since no transmission is scheduled, qℓ+1 can be computed

directly based on qℓ according to (4). The minimand in

(9) can be simplified as

C(sch,ℓ, qℓ,a)|[a]1=0,Ns,ℓ=0

+ γ

∫

S

b(sch,ℓ)V
∗(qℓ+1, b(sch,ℓ+1))dsch,ℓ. (11)

The channel state belief b(sch,ℓ+1) can be recursively

updated as

b(sch,ℓ+1) ∝
∫

S

f(sch,ℓ+1|sch,ℓ)b(sch,ℓ)dsch,ℓ. (12)

Given the Gaussian assumption in (2) and (3), the channel

state belief in (10) and (12) can be computed through oper-

ating over the mean vectors and the covariance matrices of
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V ∗(qℓ,b(sch,ℓ);Θ) = min
a∈A

[ N∑

k=0

∫

S

C(sch,ℓ, qℓ,a) Pr(Ns,ℓ = k|sch,ℓ,a)b(sch,ℓ)dsch,ℓ

+ γ

N∑

k=0

∫

Z

∫

S

Pr(Ns,ℓ = k|sch,ℓ,a)f(zch,ℓ|sch,ℓ,a)b(sch,ℓ)V ∗(qℓ+1, b(sch,ℓ+1);Θ)dsch,ℓdzch,ℓ

]

(9)

relevant random vectors using Kalman filtering [34]. Detailed

discussions will be provided in Section V.

B. An Overview of the Proposed Algorithm for Online Adap-

tive Transmission

Finding the optimal online transmission strategy requires

estimation of channel model parameters and online planning at

the beginning of each epoch. The model parameter estimation

is performed based on channel measurements collected in

the past epochs. A recursive estimator is desirable for online

implementation, and especially in the presence of temporal

variation of UWA channels. Given the model estimation, the

optimal transmission strategy can be obtained by solving (9).

Due to the mix of continuous and discrete random variables,

the optimal solution to the BOE is not straightforward. In

Section IV, we will develop a Monte Carlo sampling approach

for online approximation of the optimal solution. In Section

V, an algorithm will be designed to recursively estimate the

unknown model parameter set Θ and track the channel state.

At the outset, an overview of the proposed algorithm is in

the following. At the beginning of epoch ℓ, the belief state

b(sch,ℓ) is computed recursively via (10) or (12), based on the

parameter set estimation Θ̂ℓ−1, the belief state b(sch,ℓ−1), and

the observation zch,ℓ−1. The queue length qℓ can be observed.

Based on the current knowledge of the system state and the

channel model estimation, the optimal transmission strategy

(i.e. action) can be obtained by solving (9). The transmitter

applies the obtained transmission strategy. At the end of the

epoch, the transmitter collects possible feedback from the

receiver. Based on the observation zch,ℓ and the previous

model estimation Θ̂ℓ−1, the transmitter updates the channel

model estimation, denoted by Θ̂ℓ. The belief state b(sch,ℓ),
the observation zch,ℓ, and the model estimation Θ̂ℓ will be

used to compute the belief state b(sch,ℓ+1) in the next epoch.

The above process is repeated for each epoch.

IV. MONTE CARLO SAMPLING FOR ONLINE

APPROXIMATION

The mix of continuous and discrete random variables in

the BOE (9) makes it intractable to solve. In this section,

we develop a Monte Carlo sampling-based approach [39] to

approximate the value function and to find a near-optimal

solution. The approach is also known as Monte Carlo planning.

A. Value Function Approximation

The BOE in (9) has a recursive form. Given an estimation of

the model parameters Θ̂, sampling-based methods [40] can be

applied to approximate the value function recursively through

constructing a state-action tree (see Fig. 2 for an illustration,

details provided later). The approximation accuracy increases

as the number of samples in the state-action tree increases,

which however, incurs higher computational complexity.

In this work, the idea of sparse sampling [39] is applied

during the state-action tree construction. To guide the selection

of “important” samples, a linear regression (LR) method [41]

is introduced to approximate the value function of the system

state based on past value function approximations. Specifically,

for the system state {q, b(sch), Θ̂}, denote x as a vector

stacked by q and the scalar elements in the mean vector and

the covariance matrix of the channel belief state b(sch). The

value function can be approximated as

V (x;φ) = φ0 + x
Tφ1, (13)

where φT := [φ0,φ
T
1 ] is the LR coefficient vector1. The LR

coefficient vector can be updated via the stochastic gradient

decent method [41] based on past value function approxima-

tions.

The proposed Monte Carlo sampling approach has two

steps. The first step is to construct a state-action planning tree,

as depicted in Fig. 2. The second step is to approximate the

value function recursively based on the state-action tree, as

described in Algorithm 1. Details about the two steps are in

the following.

1) State-action Tree Construction: Given a root node which

represents the current system state, the state-action tree is

constructed by sequentially drawing samples of actions and

samples of the system states up to a certain planning depth

(denoted by D). Specifically,

• Let the current system state described by a triplet

(q, b, Θ̂) be the root state node of the state-action tree,

where q is the queue length, and b is the channel belief

state;

• For each system state node (including the root node)

in the state-action tree, a small number (Na) of actions

which yield less approximated expected costs will be

selected to expand the tree. To do so, one first enumerates

all the actions in the action space. For each enumerated

action, a number (No) of child nodes describing the

system states in the next epoch can be obtained through

drawing samples of the channel state, the observations

of the channel state, and the number of successfully

delivered packets; see Algorithm 2. The value of each

child system state node can be approximated by the LR

1For the elements in x which have relatively higher orders of magnitude,
they can be multiplied by constants to reduce their orders of magnitude. For
example, the values of µ and q are multiplied by 0.1 and 1/rg, respectively,
in Section VI for the LR.
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depth d=3

depth d=2

depth d=1

system state In the current epoch (d=0)

system state to be explored

action to be explored

system state sample

action node

Fig. 2. An illustration of the state-action tree for online planning, with the tree depth D = 3. There are 4 actions in the action space A. At depth d, No = 3
system state samples are drawn based on the action and the system state at depth (d− 1). Na = 2 actions and 1 child system state node are further explored
at each depth.

(c.f. Lines 8 to 11 in Algorithm 1). The expected cost

induced by each action can be approximated by summing

up the expected immediate cost and the averaged value

of its child system state nodes.

The expected immediate cost of each action can be

computed by drawing a sufficient number of channel

samples according to the belief state. The immediate cost

corresponding to each channel sample can be obtained

based on the packet error rate of the channel sample

according to (5) and (7). The average of the immediate

costs corresponding to all the channel samples yields the

expected immediate cost.

• For each action to be further explored via the tree

expansion, for computational efficiency, only one of its

child nodes is randomly selected and serves as the system

state to be explored in the next epoch.

The above process is repeated until the tree reaches the

maximal planning depth, namely, the maximal number of

future epochs to be evaluated.

The values of D, Na, and No can be determined to strike a

balance between the approximation accuracy and the computa-

tional complexity. Benefited from the LR-based value function

approximation and the sparse sampling, the structure of the

state-action tree can be much simplified compared to the case

when all the actions or a large amount of child system state

samples are explored to reach similar approximation accuracy.

2) Valuation Function Calculation: The value of the root

state node (i.e., the current system state), can be calculated by

propagating the values of all the child nodes in the state-action

tree to the root node. Specifically,

• The value of a particular system state node at the planning

depth d (d < D) is set as the minimal expected cost

induced by the selected actions to be explored, and

the action with the minimal expected cost is taken as

the optimal action. For the system state nodes at the

tree leaves, their values are approximated by the LR

(c.f. Lines 2 to 4 in Algorithm 1).

• For each action, we follow the concept of the temporal

difference (TD) learning [8] to approximate its expected

cost (as shown in Line 16 of Algorithm 1), based on its

expected immediate cost, the value of its child system

state node in the state-action tree, and the approximated

cost obtained via the LR method (c.f. Lines 8 to 11 in

Algorithm 1). Compared to the method that calculates

the expected cost as the summation of the expected

immediate cost and the value of the child system state

node, the above method can exploit the historical value

function approximation results obtained via the LR to

achieve higher approximation accuracy.

B. Computational Complexity

Denote K as the total number of channel state samples

to calculate the expected immediate cost of each action

and CPER as the complexity of calculating the PER. The

computational complexity of the expected immediate cost is

Ccur = O(KCPER). The computational complexity to sample

the triplet in Algorithm 2 in the worst case, namely, every ac-

tion indicating packet transmissions, is C2 = O(Cest+CPER)
where Cest is the computational complexity for the channel

model estimation. The complexity of Algorithm 1 in the worst

case is C1 = O(|A|ND−1
a CD

cur + |A|ND−1
a NoC2). Hence,

the total complexity of the algorithm in the worst case is

O(C1 + Cest).

V. RECURSIVE ESTIMATION OF UNKNOWN CHANNEL

MODEL PARAMETERS

To facilitate online implementation, we will develop a

low-complexity recursive algorithm to estimate the parameter

set Θ and the channel state vector based on the sequen-

tially obtained observations {zch,ℓ}. For notation convenience,

we denote z
ℓ2
ch,ℓ1

:= {zch,ℓ1 , · · · , zch,ℓ2} and s
ℓ2
ch,ℓ1

:=
{sch,ℓ1 , · · · , sch,ℓ2}.

At time epoch ℓ, the unknown parameters can be estimated

by maximizing the log-likelihood function with respect to
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Algorithm 1 Value function approximation:

V(q, b, Θ̂, d, γ, α, β, λ)

Input: Discount factor γ, temporal difference (TD) learning

rate α, learning rate in the linear regression (LR) β, regulariza-

tion parameter λ, current planning depth d, and system state

(q, b, Θ̂)
Set the LR coefficient vector φT := [φ0,φ

T
1 ] as a global

parameter

Output: Approximated value function Vopt

1: Assign an integer value to D (D > 0) and set Vopt=+∞
2: if d = D then

3: For system state (q, b, Θ̂), set x as a vector consisting

of q and all the scalar elements in the mean vector and

the covariance matrix of the channel belief state b
4: return V (x;φ) = φ0 + x

Tφ1

5: for i = 1 to |A| do

6: Select an action a from the action space A without

replacement

7: Compute the expected immediate cost ci, and set vi =
ci

8: for j = 1 to No do

9: Obtain a state sample (q′, b′, Θ̂
′
) according to

action a based on Algorithm 2

10: For (q′, b′, Θ̂
′
), set x

′
ij as a vector consisting of

q′ and all the scalar elements in the mean vector and the

covariance matrix of the channel belief state b′

11: vi ← vi +
γ
No

V (x′
ij ;φ)

12: Sort elements in {v1, v2, · · · , v|A|} in an increasing order

as {v(1), v(2), · · · , v(|A|)}
13: for i = 1 to Na do

14: Choose action a yielding v(i)

15: Randomly select a state sample (q′, b′, Θ̂
′
) obtained

after taking action a

16: Perform the TD learning:

v(i) ← v(i)+α(c(i)+γV(q′, b′, Θ̂′
, d+1, γ, α, β, λ)−v(i))

17: Update the LR vector:

φ← φ− β(V (x;φ)− v(i))∇φV (x;φ)− βλφ
18: if v(i) < Vopt then

19: Vopt = v(i)
20: aopt = a

21: return Vopt

the complete data set Lℓ(Θ) := ln f(zℓch,0, sch,−1, s
ℓ
ch,0|Θ).

However, the channel state process {sch,ℓ′} is not observ-

able. Instead, the expectation-maximization (EM) algorithm

[41] can be used, which estimates the unknown parameters

iteratively through an expectation step and a maximization

step. Given a parameter set estimation Θ̂, in the expectation

step, the expectation of the log-likelihood function can be

approximated as

E

[

Lℓ(Θ)|Θ̂
]

=

∫
[
ln f(zℓch,0, sch,−1, s

ℓ
ch,0|Θ)

]

× f
(

s
ℓ
ch,−1|zℓch,0, Θ̂

)

dsℓch,−1. (14)

The parameter set estimation can be updated in the maximiza-

Algorithm 2 Sample the queue state and the belief state in

the next epoch

Input: Belief state b, queue length q, action a, and model

estimation Θ̂

Output: Belief state b′, and queue length q′ in the next epoch,

and updated estimated Θ̂
′

1: if a indicates transmissions then

2: Sample the channel state sch from the belief state b
3: Sample the observation noise w from N (0, Ĉw)
4: Compute the observation z = sch +w

5: Compute b′ via Kalman filtering based on based on b
and observation z

6: Sample the number of packets that are successfully

decoded by the receiver, Ns, based on the channel state

samples and the action a, according to (5).

7: Compute the queue length in the next epoch q′ = q+
rg − rNs

8: else

9: Set q′ = q + rg
10: Compute b′ based on b via Kalman filtering without

channel observation

11: Update Θ̂
′

as described in Section V

12: return (q′, b′, Θ̂)

tion step as Θ̂
new

= arg max E
[
Lℓ(Θ)|Θ̂

]
.

The algorithm, however, requires processing within each

iteration the data in the current and all the past epochs, hence

is not amenable to online implementation. We next introduce

several approximations, and then develop an EM-type and low-

complexity recursive algorithm that estimates the parameter

set Θ in each epoch iteratively based on the new observation

vector and the parameter estimation in the last epoch. We

denote Θ̂ℓ′ as the estimation at epoch ℓ′.

A. Approximation for Recursive Operation

Consider that

ln f(zℓch,0, s
ℓ
ch,−1|Θ) = ln f(zch,ℓ, sch,ℓ|sch,ℓ−1,Θ)

+ ln f(zℓ−1
ch,0, s

ℓ−1
ch,−1|Θ). (15)

The expectation in (14) can be decomposed as

E
[
Lℓ(Θ)|Θ̂

]
=

∫

[ln f(sch,−1|Θ)]f(sch,−1|zℓch,0, Θ̂)dsch,−1

+
ℓ∑

ℓ′=0

∫

[ln f(sch,ℓ′ , zch,ℓ′ |sch,ℓ′−1,Θ)]

× f
(

sch,ℓ′ , sch,ℓ′−1|zℓch,0, Θ̂
)

dsch,ℓ′dsch,ℓ′−1. (16)
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It can be approximated in two steps,

E
[
Lℓ(Θ)|Θ̂

]
≈
∫

[ln f(sch,−1|Θ)]f(sch,−1|zℓch,0, Θ̂)dsch,−1

+

ℓ∑

ℓ′=0

∫

[ln f(sch,ℓ′ , zch,ℓ′ |sch,ℓ′−1,Θ)]

× f(sch,ℓ′ , sch,ℓ′−1|zℓ
′

ch,0, Θ̂)
︸ ︷︷ ︸

≈f(sch,ℓ′ ,sch,ℓ′−1|z
ℓ
ch,0

,
ˆ
Θ) in Eq. (16)

dsch,ℓ′dsch,ℓ′−1, (17a)

≈
∫

[ln f(sch,−1|Θ)]f
(

sch,−1|zℓch,0, Θ̂−1

)

dsch,−1

+

ℓ−1∑

ℓ′=0

∫

[ln f(sch,ℓ′ , zch,ℓ′ |sch,ℓ′−1,Θ)]

× f(sch,ℓ′ , sch,ℓ′−1|zℓ
′

ch,0, Θ̂ℓ′)
︸ ︷︷ ︸

≈f(sch,ℓ′ ,sch,ℓ′−1|z
ℓ′

ch,0
,
ˆ
Θ) in Eq. (17a)

dsch,ℓ′dsch,ℓ′−1

+

∫

[ln f(sch,ℓ, zch,ℓ|sch,ℓ−1,Θ)]

× f(sch,ℓ, sch,ℓ−1|zℓch,0, Θ̂)dsch,ℓdsch,ℓ−1, (17b)

where the expectation of ln f(sch,ℓ′ , zch,ℓ′ |sch,ℓ′−1,Θ) in

(17a) is performed with respect to f(sch,ℓ′ , sch,ℓ′−1|zℓ
′

ch,0, Θ̂)

instead of f(sch,ℓ′ , sch,ℓ′−1|zℓch,0, Θ̂), and in (17b), the expec-

tation of [ln f(sch,ℓ′ , zch,ℓ′ |sch,ℓ′−1,Θ)] can be computed at

epoch ℓ′ based on f(sch,ℓ′ , sch,ℓ′−1|zℓ
′

ch,0, Θ̂ℓ′). The above ap-

proximations enable recursive computation of the summation

on the right side of (17b).

One more approximation is made for recursive computation

of the PDF f(sch,ℓ, sch,ℓ−1|zℓch,0, Θ̂). Note that

f(sch,ℓ, sch,ℓ−1|zℓch,0, Θ̂) = 1/c0 × f(zch,ℓ|sch,ℓ, Θ̂)

× f(sch,ℓ|sch,ℓ−1, Θ̂)f(sch,ℓ−1|zℓ−1
ch,0, Θ̂) (18)

where c0 is a normalization constant. We approximate the joint

PDF by

f̃(sch,ℓ, sch,ℓ−1|zℓch,0, Θ̂) := 1/c′0 × f(zch,ℓ|sch,ℓ, Θ̂)

× f(sch,ℓ|sch,ℓ−1, Θ̂)f̃(sch,ℓ−1|Θ̂ℓ−1), (19)

through replacing f(sch,ℓ−1|zℓ−1
ch,0, Θ̂) by f̃(sch,ℓ−1|Θ̂ℓ−1) in

(18), wheref̃(sch,ℓ′ |Θ̂ℓ′) is defined as the marginalization of

f̃(sch,ℓ′ , sch,ℓ′−1|zℓ
′

ch,0, Θ̂ℓ′) with respect to sch,ℓ′ , and c′0 is a

normalization constant.

Finally, based on (17b) and (19), the expectation

E
[
Lℓ(Θ)|Θ̂

]
is approximated by Qℓ(Θ|Θ̂) which is

recursively defined as

Qℓ(Θ|Θ̂)=γchQℓ−1(Θ|Θ̂ℓ−1)+
∫

[ln f(sch,ℓ, zch,ℓ|sch,ℓ−1,Θ)]

× f̃(sch,ℓ, sch,ℓ−1|zℓch,0, Θ̂)dsch,ℓdsch,ℓ−1, (20)

where γch ∈ (0, 1] is a forgetting factor that accounts for the

temporal variation of unknown parameters. Based on (20), the

expectation and maximization operations in the EM algorithm

can be applied for recursive and iterative parameter estimation

and channel tracking, as described in the next subsection.

B. Recursive Model and Channel State Estimation

Denote Θ̂
(i)

ℓ = {Â(i)
ℓ , Ĉ

(i)
w,ℓ, Ĉ

(i)
v,ℓ} as the estimation

of the unknown parameters in the ith iteration at epoch

ℓ. The parameter estimation can be updated via maxi-

mizing Qℓ(Θ|Θ̂
(i)

ℓ ). Note that f(zch,ℓ, sch,ℓ|sch,ℓ−1,Θ) =
f(zch,ℓ|sch,ℓ,Θ)f(sch,ℓ|sch,ℓ−1,Θ). Substitute

f(zch,ℓ|sch,ℓ,Θ) ∼ N (sch,ℓ,Cw),

f(sch,ℓ|sch,ℓ−1,Θ) ∼ N (Asch,ℓ−1,Cv)

into the log-likelihood function in (20). Set the partial deriva-

tive of Qℓ(Θ|Θ̂
(i)

ℓ ) with respect to each unknown parameter

to zero. A set of recursive equations can be obtained,

Â
(i+1)
ℓ = Âℓ−1+
(

E[sch,ℓs
T
ch,ℓ−1]− Âℓ−1E[sch,ℓ−1s

T
ch,ℓ−1]

)

M
−1
ℓ−1, (21a)

Ĉ
(i+1)
w,ℓ =Ĉw,ℓ−1+

1−γch
1−γℓ

ch

×
{

E

[

(sch,ℓ−Â(i+1)
ℓ sch,ℓ−1)(sch,ℓ−Â(i+1)

ℓ sch,ℓ−1)
T
]

−Ĉw,ℓ−1

}

, (21b)

Ĉ
(i+1)
v,ℓ = Ĉv,ℓ−1 +

1− γch

1− γℓ+1
ch

×
{

E
[
(zch,ℓ − sch,ℓ)(zch,ℓ − sch,ℓ)

T
]
− Ĉv,ℓ−1

}

, (21c)

where an auxiliary matrix is defined as

Mℓ−1 := γchMℓ−2 + E[sch,ℓ−1s
T
ch,ℓ−1], (22)

and the expectations are performed with respect to

f̃(sch,ℓ, sch,ℓ−1|zℓch,0, Θ̂
(i)

ℓ ).
The expectations in (21) and (22) can be computed

via performing marginalization of f̃(sch,ℓ, sch,ℓ−1|zℓch,0, Θ̂
(i)

ℓ )

(c.f. (19)). For convenience, denote f̃(sch,ℓ−1|Θ̂ℓ−1) ∼
N (µℓ−1,Cℓ−1). It can be shown that [41]

E[sch,ℓ|Θ̂
(i)

ℓ ] = µ
(i)
ℓ = Â

(i)
ℓ µℓ−1+

K
(i)
ℓ (zch − Â

(i)
ℓ µℓ−1) (23a)

E[sch,ℓ−1|Θ̂
(i)

ℓ ] = µ̆
(i)
ℓ−1 = µℓ−1+

J
(i)
ℓ−1(µ

(i)
ℓ − Â

(i)
ℓ µℓ−1) (23b)

E[sch,ℓs
T
ch,ℓ|Θ̂

(i)

ℓ ] = C
(i)
ℓ + µ

(i)
ℓ µ

(i),T
ℓ (23c)

E[sch,ℓ−1s
T
ch,ℓ−1|Θ̂

(i)

ℓ ] = C̆
(i)
ℓ−1 + µ̆

(i)
ℓ−1µ̆

(i),T
ℓ−1 (23d)

E[sch,ℓs
T
ch,ℓ−1|Θ̂

(i)

ℓ ] = C
(i)
ℓ J

(i),T
ℓ−1 + µ

(i)
ℓ µ̆

(i),T
ℓ−1 (23e)

where K
(i)
ℓ = P

(i)
ℓ

(
Ĉ

(i)
v + P

(i)
ℓ

)−1
with P

(i)
ℓ =

Â
(i)
ℓ Cℓ−1Â

(i),T
ℓ +Ĉ

(i)
w , J

(i)
ℓ−1 = Cℓ−1Â

(i),T
ℓ

(
P

(i)
ℓ

)−1
, C

(i)
ℓ =

(I−K
(i)
ℓ )P

(i)
ℓ , and C̆

(i)
ℓ−1 = Cℓ−1 +J

(i)
ℓ−1(C

(i)
ℓ −P

(i)
ℓ )J

(i),T
ℓ−1 .

In summary, when zch,ℓ is available at the end of epoch ℓ,
the iterative model parameter estimation can be initialized as

Θ̂
(0)

ℓ = Θ̂ℓ−1. The expectation and maximization operations

are performed iteratively based on (23) and (21). Consider

that the operation terminates after a pre-determined number
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of iterations, denoted by Niter. We set Θ̂ℓ = Θ̂
(Niter)

ℓ and

f̃(sch,ℓ|Θ̂ℓ) ≃ N (µℓ,Cℓ) with µℓ = µ
(Niter)
ℓ and Cℓ =

C
(Niter)
ℓ , which will be used for the operation in the next

epoch. If no transmission is scheduled in epoch ℓ, namely,

zch,ℓ is an empty set, no model parameter estimation is needed.

One can set Θ̂ℓ = Θ̂ℓ−1, µℓ = Âℓ−1µℓ−1 and Cℓ =

Âℓ−1Cℓ−1Â
T
ℓ−1+Ĉw,ℓ−1. In both cases, the a posteriori PDF

f̃(sch,ℓ|Θ̂ℓ) and the conditional PDF f̃(sch,ℓ+1|sch,ℓ, Θ̂ℓ) can

be used to compute the belief state b(sch,ℓ+1) according to

(10) or (12).

Remark 2: The proposed algorithm does not guarantee that

the Nakagami-fading parameter m ≥ 1/2. In the Monte Carlo

sampling method for online approximation, we only draw

samples of m which are greater than 1/2 based on the channel

belief state.

VI. ALGORITHM EVALUATION

The proposed algorithm is evaluated using data sets col-

lected from two experiments: one is the Surface Processes and

Acoustic Communications Experiment (SPACE08), and the

other is an experiment conducted in the Keweenaw Waterway

near Michigan Tech in Nov. 2014 (KW-NOV14).

A. Experiment Description

The SPACE08 experiment was conducted near the coast of

Martha’s Vineyard, MA, from Oct. 14 to Nov. 1, 2008. We

consider the data collected by a receiver which is 200 meters

away from the transmitter, from Julian date 287 to Julian

date 302. Due to the appearance of severe weather conditions

during the experiment, some of the data files were damaged

hence are excluded for algorithm evaluation. A waveform of

10 seconds was transmitted every two hours from the source

to the receiver, leading to 12 transmissions per day. The

waveform consists of 60 signaling blocks within the frequency

band [8, 18] kHz, and each block has 672 symbols. In this

work, we take each transmission as one epoch and take each

signaling block as one packet. There are 117 epochs in total.

The channel distribution parameters µ, σ and m within each

epoch are estimated via the method of moments [34] based

on the received SNR samples obtained within that epoch. The

evolution of the distribution parameters is shown in Fig. 3.

The KW-NOV14 experiment was held in the Keweenaw

Waterway adjacent to Michigan Tech from Nov. 22 to Nov. 28,

2014 when the water surface was covered by a thin layer of

ice. The distance between the transmitter and the receiver is

312 m. A waveform of about 9 seconds was transmitted every

15 minutes. The waveform consists of 20 signaling blocks

within the frequency band [14, 20] kHz, and each block has

672 symbols. Similar to SPACE08, we take each transmission

as one epoch and take each signaling block as one packet.

A total of 117 epochs are used for algorithm evaluation.

Artificial Gaussian noise is added to the received signal in KW-

NOV14 such that the two experiments have similar average

channel losses over all the epochs. Evolution of the KW-

NOV14 channel distribution parameters is shown in Fig. 3.

TABLE I
TRANSMISSION MODES.

Mode Index Coding rate Modulation TSNR

1 N/A N/A 0

2 1/2 BPSK 76 dB

3 1/2 BPSK 79 dB

4 1/2 QPSK 79 dB

5 1/2 BPSK 82 dB

6 1/2 QPSK 82 dB

7 3/4 QPSK 85 dB

8 3/4 QPSK 88 dB

Comparing the channels in the two experiments, one can see

that the channel in SPACE08 varies faster than that in KW-

NOV14 due to a larger time interval between two consecutive

transmissions. Especially about KW-NOV14, the mean of the

channel lognormal shadowing per epoch (µ) is quite stable

from epoch 30 to 75, and the values of σ on the order of

10−3 reveals very slow variation.

B. Emulation Setup and Performance Metric

We consider 8 transmission modes as listed in Table I. Mode

1 refers to no transmission. There are five non-zero discrete

transmission power levels according to the listed transmission

SNRs (TSNRs) (Ptx/N0). We set the ambient noise level using

an empirical formula N0 [dB] = 55+ 10 log10(bandwidth) re

1µPa2 [42], which leads to 94.9 dB for SPACE08 and 92.8 dB

for KW-NOV14. For a given transmission mode and a channel

parameter triplet {µ, σ,m}, the PER is computed using an

information-theoretic method [36, Eq. (4)].

We define the cost function as

C(sℓ,aℓ)= log2 (1+Pℓ/Pmax) +
(
qℓ−rℓNs,ℓ

)
/rmax, (24)

where Pℓ is the transmission power in the ℓth epoch in Watts,

Pmax is the maximal transmission power in Watts, and rmax

is the maximal amount of information bits that can be carried

during one epoch. According to Table I, rmax can be computed

based on the mode with the highest data rate, namely, Mode

8, as rmax = 672× 3
4× log2 4×Npa, where 672 is the number

of symbols per packet, and Npa is the total number of packets

within one epoch.

The average observed cost is used as the performance

metric,

C̄ =
1

Nepoch

Nepoch∑

ℓ=1

C(sℓ,aℓ), (25)

where Nepoch is the total number of epochs in the algorithm

evaluation.

To establish a performance upper bound, we consider a

genie-aided transmission scheme with non-causal and perfect

knowledge. It assumes that at the beginning of each epoch, the

transmitter knows the number of successfully delivered packets

corresponding to each transmission action in the current and all

the future epochs. With the above knowledge, the system state

only consists of the queue state. The optimal action selection

can be formulated as a dynamic programming (DP) problem,

V ∗
Genie(qℓ) = min

a∈A
[C(qℓ,a) + γV ∗

Genie(qℓ+1)] , (26)
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Fig. 3. Estimated parameters {µ, σ,m} in two experiments. In KW-NOV14, the estimated σ’s are on the order of 10−3.

TABLE II
AVERAGE PERFORMANCE USING THE SPACE08 DATA SET.

Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5

Average Queue Length [kilobits] 10.9 13.1 254.8 949.6 7.1

Average Transmission Power [dB] 76.2 81.1 81.3 76.0 84.4

Average Cost 0.47 0.58 4.48 15.79 0.65
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Fig. 4. The performance of fixed-mode transmissions. The number next to
each mode is the average cost calculated based on the cost function in (24).

where C(qℓ,a) is defined as in (24), and qℓ+1 and qℓ are

related as in (4) with perfect knowledge of Ns,ℓ for a given a.

The optimization problem (26) is essentially a deterministic

DP problem. However, the DP solver cannot be applied to

(26) directly due to the curse of dimensionality [8] induced

by the large total number of epochs and a large queue state

space. To obtain a near-optimal solution, we modify Algorithm

2 to approximate the value function in (26). Specifically, to

approximate the expected cost induced by one action (c.f.

Lines 8 to 11 in Algorithm 1), the process of drawing system

state samples is replaced by using the true system state

directly. Correspondingly, the TD learning is performed based

on the true system state instead of a system state sample in

the next epoch (c.f. Line 16 in Algorithm 1).

C. General Results

We set the data arrival rate rg = 20 kilobits per epoch for

SPACE08 and rg = 6 kilobits per epoch for KW-NOV14. For

an epoch with a small queue length, if the number of encoded

data packets according to a chosen transmission mode is less

than the number of time slots within that epoch (see Fig. 1), the

remaining time slots will be used to transmit dummy packets at

a very low power level (with TSNR = 70 dB) for the purpose

of channel probing. The average packet transmission power

will be used to calculate the cost defined in (24).

To shed light on the tradeoff between energy consumption

and information delivery latency, Fig. 4 depicts the perfor-

mance of fixed-mode transmissions in both experiments. Ac-

cording to the cost function defined in (24), Mode 8 achieves

the least average cost in both experiments.

We compare in details the performance of five schemes for

the transmission action selection.

• Scheme 1: The genie-aided transmission scheme;

• Scheme 2: The proposed online algorithm;

• Scheme 3: Randomly select a transmission action from

the action space in each epoch;

• Scheme 4: Select the action with the least transmission

power and rate, namely, Mode 2, in all epochs;

• Scheme 5: Select the action with the highest transmission

power and rate, namely, Mode 8, in all epochs.

In the proposed algorithm, the number of the child system

nodes for each action No, the number of the actions to be

explored Na, and the planning depth D are set to be 3, 3,

and 5, respectively. We set the discount factor γ = 0.8 in

both the genie-aided scheme and the proposed algorithm. The

unknown channel model parameters in the first epoch Θ̂0 are

initialized as Â0 = Ĉw,0 = Ĉv,0 = diag([1, 1, 1]). We set

the forgetting factor γch = 0.8 and the number of iterations

Niter = 20. The learning rates for the TD learning and the LR,

i.e., α and β, are set to be 0.01 and 0.01, respectively. The

regularization parameter λ is set to be 1. The initial values of
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Fig. 6. SPACE08: The mean of the channel lognormal shadowing and selected actions in different schemes.

all the elements in φ are set as 0. The number of channel state

samples to calculate the expected immediate cost is set to be

100.

1) SPACE08: The performance of different schemes is

shown in Table II. It can be seen that the proposed algorithm

has the least performance gap with the genie-aid method.

Schemes 3 and 4 suffer from very large average queue lengths.

Compared to the proposed algorithm, Scheme 5 has a smaller

average queue length but requires more average transmission

power.

The immediate costs per epoch of different schemes are

shown in Fig. 5. One can see that the immediate cost of the

proposed algorithm is close to that of the genie-aided method.

With the immediate costs fluctuating with the mean of the

channel lognormal shadowing, the proposed algorithm and the

genie-aided method are able to maintain low costs when the

average channel loss is small (i.e., when µ is large). When the

average channel loss is large, the proposed algorithm still can

maintain relatively low immediate costs. The immediate costs

of Schemes 3 and 4 increase drastically due to the random

selection of transmission actions in Scheme 3 and the adoption

of the least transmission power and data rate in Scheme

4. Scheme 5 has larger immediate costs than the proposed

algorithm and the genie-aided method in most epochs, due to

its adoption of the largest transmission power.

The actions selected by different schemes are shown in

Fig. 6. The proposed algorithm and the genie-aided method

prefer in most epochs the transmission action with a moderate

transmission power level and a moderate data rate, i.e., 1/2

QPSK and 79 dB. In the epochs with large channel losses,

the proposed algorithm opts for the transmission actions with

larger transmission power levels to suppress the increase of

the data queue length.

The channel state vector estimation and the normalized root

mean squared error (NRMSE) of the estimation are depicted

in Fig. 7. The results reveal that the proposed channel model
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Fig. 7. SPACE08: Comparison between the mean (µ̄, σ̄, m̄) of the estimated channel belief state and the true channel state (µ, σ,m), and the NRMSE.

can capture the channel dynamics reasonably well, and the

NRMSE less than 0.1 in each epoch shows the superior

performance of the proposed recursive estimation algorithm.

2) KW-NOV14: The performance of different schemes is

shown in Table III. It can be seen that the proposed algorithm

has the least performance gap with the genie-aid method.

Schemes 3 and 4 suffer from large average queue lengths. Al-

though Scheme 5 has a small average queue length, it requires

the most average transmission power among all schemes.

The immediate costs and actions of different schemes are

shown in Figs. 8 and 9, respectively. The immediate cost of

Scheme 4 grows drastically due to its adoption of the least

transmission power and data rate. Schemes 3 and 5 have

larger immediate costs than the proposed algorithm and the

genie-aided method in most epochs. The immediate cost of the

proposed algorithm is close to that of the genie-aided method.

A large performance gap between the proposed algorithm

and the genie-aided method can be observed during epochs

8 to 32. Due to large channel dynamics and large channel

losses in those epochs, the immediate cost of the proposed

algorithm grows greater than that of the genie-aided method

which can adapt the transmission mode more precisely. A little

lag around epoch 30 can be observed between the changes of

the immediate costs of those two schemes. During epochs 32

to 85, the immediate costs obtained by the proposed algorithm

and the genie-aided method are almost identical, as the trans-

mitter in the proposed algorithm has learned adequate channel

knowledge. Both schemes prefer the transmission action with

a moderate transmission power level and a moderate data rate,

i.e., 79 dB and 1/2 QPSK.

The channel state vector estimation and the NRMSE of

the estimation are depicted in Fig. 10. Similar to the case

in SPACE08, the difference between the mean values of the

channel belief state and the true channel states is small and

the NRMSE is less than 0.1 in every epoch. The results

validate the effectiveness of the proposed recursive estimation

algorithm.
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D. Performance of the Proposed Algorithm with Different

System Setups

The performance of the proposed algorithm is examined in

different system setups, including different data arrival rates

from the application layer, different numbers of child system

state samples in online approximation, different numbers of

actions to be explored, and different depths of the state-action

tree, in the Monte Carlo planning.

To quantify the performance of the proposed algorithm

in different setups, we take the performance of the genie-

aided scheme as a benchmark, and evaluate the normalized

difference which is defined as
(
C̄− C̄Genie

)
/C̄Genie, where C̄

is the average cost defined in (25). For comparison purpose,

C̄Genie is obtained based on No = 3, Na = 3, and D = 5.
1) Performance with different data arrival rates: The data

arrival rate will impact the performance of the proposed

algorithm. As the data arrival rate increases, both the proposed

algorithm and the genie-aided method prefer the transmission

modes with high data rates to suppress the increase of the

data queue length. Without precise channel knowledge, there

are high chances that the proposed algorithm could sched-

ule high-data-rate transmissions in epochs with bad channel

conditions. Consequently, the proposed algorithm suffers an

increased performance gap with the genie-aided method that

determines the transmission actions based on non-causal and

perfect knowledge. Fig. 11 shows the normalized performance

difference of the proposed algorithm w.r.t. the genie-aided

method with different data arrival rates. It can be seen that

as the data arrival rate increases from a small value to a

moderately large value, the normalized difference increases.

However, with further increase of the data arrival rate, the

normalized difference starts decreasing. This is caused by

the large value of the average cost C̄Genie that increases

monotonically with the data arrival rate.
2) Performance with different numbers of child system state

samples and actions to be explored in online approximation:

The normalized performance difference of the proposed algo-

rithm w.r.t. the genie-aided method with different numbers of

child system state samples and different numbers of actions to

be explored in online approximation are shown in Fig. 12(a)

and Fig. 12(b), respectively. The performance improvement is

minor with the increase of the numbers of child system state

samples and actions to be explored. This indicates that with

a small number of child system state samples and a small

number of actions to be explored, the proposed algorithm can

achieve good online approximation performance with a low

computational complexity.
3) Performance with different depths of Monte Carlo plan-

ning: The depth of Monte Carlo planning is a key factor in

the tradeoff between the approximation accuracy and the com-

putational complexity; see Section IV-B. Fig. 12(c) shows the

normalized performance difference of the proposed algorithm

w.r.t. the genie-aided method with different planning depths.

It can be seen that considerable performance improvement is

achieved when the depth of planning is increased from 1 to 2

in SPACE08 and from 1 to 3 in KW-NOV14. Further increase

of the planning depth in both experiments leads to slight

performance improvement, which, however, is accompanied

with exponentially increased computational cost. The results

demonstrate that the proposed algorithm achieves decent per-

formance with a small depth of planning since it stores and

exploits the historical knowledge of the value function via the

TD learning and the LR when evaluating the future expected

costs.

VII. CONCLUSIONS

This work focused on an UWA point-to-point transmission

system which operates on an epoch-by-epoch basis over a long

term, and developed an adaptive transmission algorithm which

exploits the UWA channel dynamics to trade off energy con-

sumption with information delivery latency. To describe both

the short-term fading and the large-scale shadowing of UWA

channels, the Nakagami-lognormal distribution was adopted

for channel characterization. To account for the channel varia-

tion across epochs, the evolution of the channel distribution pa-

rameters was modeled as a Markov process with unknown pa-

rameters. Given that the channel can only be observed during

active transmissions, we formulated the adaptive transmission

problem as a POMDP to strike an optimal tradeoff between

learning the channel dynamics via active transmissions and

exploiting the learned channel knowledge for transmission

efficiency. An algorithm in the model-based RL framework

was developed, which recursively estimates the channel model

parameters and computes the optimal transmission strategy

that minimizes a long-term system cost. Thorough algorithm

evaluation was performed using channel measurements from

two field experiments. The emulated results revealed that the

proposed algorithm achieves decent performance relative to

a benchmark method that assumes perfect and non-causal

channel knowledge.
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Fig. 12. Normalized difference with respect to the genie-aided method with different Monte Carlo planning parameters. rg = 20 kb/epoch in SPACE08, and
rg = 6 kb/epoch in KW-NOV14.


