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Abstract—In mobile crowd-sensing systems, the value of crowd-
sensed big data can be increased by incentivizing the users
appropriately. Since data acquisition is participatory, crowd-
sensing systems face the challenge of data trustworthiness and
truthfulness assurance in the presence of adversaries whose mo-
tivation can be either manipulating sensed data or collaborating
unfaithfully with the motivation of maximizing their income.
This paper proposes a game theoretic methodology to ensure
trustworthiness in user recruitment in mobile crowd-sensing sys-
tems. The proposed methodology is a platform-centric framework
that consists of three phases: User recruitment, collaborative
decision making on trust scores, and badge rewarding. In the
proposed framework, users are incentivized by running sub-game
perfect equilibrium (SPE) and gamification techniques. Through
simulations, we show that approximately 50% and a minimum of
15% improvement can be achieved by the proposed methodology
in terms of platform and user utility, respectively, when compared
to fully-distributed and user-centric trustworthy crowd-sensing.

Index Terms—Ambient intelligence, Data acquisition, Data
analysis, Distributed computing, Intelligent sensors, Internet
of Things, Mobile computing, Game Theory, Crowd-Sensing,
Gamification.

I. INTRODUCTION

I
N the Internet of Things (IoT) Era, crowd-sensing (MCS)
has emerged from large-scale participatory sensing which

requires an implicit collaboration between crowd-sensing
platforms and sensing data providers, i.e. the participants [1],
[2]. Participants act as service providers in crowd-sensing
campaigns by only using their smart mobile devices such
as smartphones, tablets and wearables. These devices are
equipped with various built-in sensors such as GPS, camera,
accelerometer, gyroscope and microphone. Furthermore, the
widespread use of these devices unveil the potential of them
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being an integral part of the IoT sensing. As stated in [3],
because the IoT consists of massive amount of uniquely
identifiable heterogeneous devices with communication, sensing
and computing capabilities, the IoT architecture faces several
challenges concerning the acquisition, processing and storage
of big data streams.

In 2015, more than 1.4 B units of smartphones were reported
to be sold worldwide [4], while 232 M units of wearables were
sold in 2015 with a projection of 322 M unit sale in 2017 [5].
Various phenomena such as air pollution, water quality, road
condition for smart transportation, public safety and emergency
preparedness can be collaboratively sensed through these
devices in a participatory, or opportunistic manner [6], [7].
Mobile crowd-sensing has been attracting the IT industry
for various applications. A research consortium between
IBM, University of Illinois and University of Minnesota has
developed a middleware crowd-sensing platform which is
called Citizen Sense [8]. Google has developed a crowd-
sensing application called Science Journal, which is available
via Play Store [9]. Science Journal exploits various built-in
sensors in smartphones to acquire data regarding users’ interests.
The collected data undergoes real time analytics. Based on
these phenomena, mobile crowd-sensing is listed as a critical
component of the IoT [10].

Increasing popularity of the crowd-sensing applications in-
troduced in mobile platforms implies that tremendous volumes
of data need to be processed, analyzed and managed in order
to extract context-aware information and facilitate decision
making procedures [11]–[13]. According a report by Cisco [14],
smart devices are predicted to generate 98% of the mobile data
traffic and monthly mobile data traffic is forecast to reach 30.6
Exabytes by 2020. Recently, researchers have started tackling
data quality assessment [15] especially in visual crowd-sensed
data, and data quality-aware incentives in mobile crowd-sensing
in order to avoid unnecessary rewards made to participants
[16]–[18]. As the advent of Internet of Things (IoT) concept
enables mobile crowd-sensing via built-in sensors of everyday
mobile devices, uncertainty in the quality of crowd-sensed data
is complicated since the recruited participants and their crowd-
sensors are not professional/dedicated. While the quality of
sensory data can be modeled as a function of the sampling rate,
in these scenarios, it can be any random number. In order to deal
with uncertainty in these scenarios, online learning approaches
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have been proposed to acquire the statistical information about
the sensing values throughout the sensor recruitment process
[19]. In [20], uncertainty propagation in distributed sensing has
been modeled via Bootstrap-based methodology in order to
improve system accuracy. Therefore, the integration of big data
analytics into mobile crowd-sensing to improve the quality of
the aggregated data – and consequently the quality of provided
services – presents an important research area.

Effective user recruitment is a key function to achieve the
desired performance of MCS platforms [21]. Therefore, it is
imperative to incentivize users to promote participation [22],
[23]. Proper recruitment policies allow selection of users that
are able to fulfill sensing tasks with high accuracy while
minimizing the system costs. On one hand, the central platform
organizes and assigns tasks, thus sustaining a monetary cost
to recruit and reward users for their contribution. On the other
hand, users sustain costs for their contributions in terms of
energy consumed for sensing and data subscription plan use for
reporting [24]. Several incentive strategies have been proposed
in the literature with the aim of addressing the trade-off between
platform and user utility [25]. In [26], the requirements of an
effective incentive design have been listed as compatibility,
individual rationality, and efficiency.

When data analytics are applied to the aggregated data, the
quality of information is closely related to the trustworthiness
of the acquired data. In a typical mobile crowd-sensing scenario,
the central platform matches sensing tasks with suitable
participants through the recruitment process [27]. By applying
proper recruitment policies, users that are able to fulfill sensing
tasks with high accuracy can be selected, thereby minimizing
platform operating costs. On the other hand, users incur costs
for their contributions in terms of energy consumed for sensing
and data subscription plan use for reporting.

Recruitement of reliable users requires realistic incentives
to attract a sufficient number of users to the platform; several
incentive strategies have been proposed to provide a mutually-
beneficial platform for both the users and the platform [25].
Gamification is a widely adopted technique to increase user
participation in user-centric systems [28], [29]. Nowadays,
popular social platforms such as Foursquare, Twitter and Stack
Overflow apply gamification in their application environment.
Gamified incentives award badges to users. Badges stand
for virtual rewards that are meant to provide a sense of
accomplishment in the users and to motivate them to participate
actively and continuously [28].

Analyzing user behavior is a crucial aspect of gamification-
based user incentives [30]. Besides the utility of crowd-sensing
platforms and participants, trustworthiness of the sensed
big data is essential for critical applications such as public
safety [1], crisis management, and disaster preparedness [31]–
[33]. User reputations are key indicators of data trustworthiness
in mission-critical crowd-sensing applications. The presence of
malicious users introduces the risk of modified or altered data to
deliberately spread disinformation. Through anomaly detection
techniques, mis-behaving users can be detected, and their repu-
tation is reduced [34]. Thus, a key objective of a crowd-sensing
platform is to determine the level of reliability/trustworthiness
for each user. To this end, user trustworthiness and reputation

need to be stored and dynamically updated on the basis of the
quality of contributed data.

An interesting challenge pertaining to the quality of data –
and user reputation – is the possibility of inaccurate sensor
readings (e.g., malfunctioning sensors in a user’s smartphone)
causing an incorrect classification of a user as malicious, rather
than inaccurate or invalid [31], [35]. Furthermore, because of
the limited communication capability of the acquisition network,
intermediary cloudlet —or concentrator— devices exacerbate
the security concerns that are associated with the acquisition
network [36]–[38]. These concepts alone present different
research areas; in this paper, we will make the simplifying
assumption and will treat both cases as the same.

In this paper, we formulate a game theoretic approach to
recruit smartphone users, in which participants with higher
reputation are considered winners of the user recruitment phase.
Although there is preliminary analysis in gamification-based
crowd-sensing [39]–[41], this topic needs significant further
exploration. We build on our recent study in [42], where users
are incentivized via a repeated Subgame Perfect Equilibrium
(SPE) in a three-step recruitment process. The first step is user-
task matching via a reverse auction whereas the second and
third steps are collaborative decision making (i.e., SPE), and
badge rewarding for users with high reputation, respectively.

In this study, we propose a game theoretic vote-based
user recruitment in detail and investigate the impact of
environmental settings on platform and user utilities, as well
as the trustworthiness of the acquired data via crowd-sensing.
To this end, we study the impact of initial reputations of
users on platform and user utility, as well as the awards
made to malicious users. The motivation behind this study
is that the user reputations evolve in time and estimating
initial reputation of a participant becomes a challenging issue.
Furthermore, we study the impact of similarity scores of the
data reported by participants on user and platform utility under
normal conditions, where users receive positive or negative
votes from their neighbors that sense the same phenomena. We
also investigate the platform and user utility effect of different
badge rewarding mechanisms for highly reputed participants.
We evaluate our proposed framework via extensive simulations
and compare it to our previously proposed user recruitment
scheme [43]. Our proposed framework improves platform utility
by up to 50% and average user utility by 15% as compared to
our previous work.

The rest of the paper is organized as follows. Section II
presents background on big data and mobile crowd-sensing and
motivates the need for trustworthiness in user recruitment and
incentives. Section III presents the proposed trustworthiness-
driven and gamification-based users recruitment model in detail.
Section IV provides performance evaluation via extensive
simulation results under various case studies. Section V
concludes the work and outlines future research directions.

II. BACKGROUND AND MOTIVATION

In [44], the authors present a comprehensive overview on
urban sensing. Based on the role of users and how the user
is involved in sensing tasks, two main approaches, namely



participatory and opportunistic sensing are defined. Users are
self-aware about sharing data with the others in participatory
sensing but in opportunistic sensing, mobile devices are
involved in the decision making process instead of the users. In
[45], a framework has been proposed to combine the strengths
of both paradigms.

Mobile crowd-sensing is a new sensing paradigm which
incorporates built-in sensors of mobile devices and human
intelligence to monitor, share, analyze big and heterogeneous
data about diverse phenomena. Data provided by mobile crowd-
sensing is used to design a variety of applications according
to individual or group activities to model their behavior and
predict possible solutions for different patterns. Personal and
community sensing are the two primary categories under mobile
crowd-sensing applications according to a categorization based
on the type of monitored events [46].

The integration of big data analytics, mobile crowd-sensing,
cloud computing, IoT, and wearable technologies promise
to enable applications with broader impacts such as envi-
ronmental monitoring [47]–[49], infrastructure management
and social computing [50], road condition monitoring [51],
sensor-annotated video surveillance [52], and remote health
monitoring [53]–[55]. For example, the Flysensing application
is a remarkable representative of social crowd-sensing, which
runs on passengers’ smartphones en-route to share data about
safety, health monitoring, and surveillance of events in the
air [56]. Social crowd-sensing concept has been introduced to
partition huge sensing tasks to a network of participants [57].

In [58] the authors formulate a four-stage life cycle for
mobile crowd-sensing applications with the following stages:
Task creation, task assignment, individual task execution and
crowd-data integration. In each stage, the following 4W1H
framework is taken into account: What phenomena should be
sensed, when and where the assigned task should be sensed,
who is responsible for collecting data and how the sensing
task is divided between users as well as how collected data is
communicated to the recruiter.

A. Big Data and Mobile Crowd-Sensing

During the last decade, a tremendous volume of data has
been generated by means of Information and Communication
Technology (ICT). According to Zikopoulos et al., the global
data volume is expected to reach 35 Zetabytes by the end of
2020 [59]. As reported in [60], mobile crowd-sensing generates
a substantial volume of heterogeneous big data that makes it
insurmountable for relational databases to handle. Combination
of big data analytics and mobile crowd-sensing introduces new
challenges to assure the veracity of the acquired data. This
motivates the development of novel methods for the storage,
management, and processing of crowdsensed data by using
predictive analytics, data mining, text analytics, and statistical
analysis [61]–[63].

The authors in [64] provide various big data applications
in smart cities, namely smart grid, smart health care, smart
transportation and smart homes. TreSight [65] is an example
smart city big data application that uses Big Data Analytics
(BDA) and Internet of Things (IoT) to form a recommendation

system that aims to improve the smart tourism in the city of
Trento, Italy. Furthermore, the output of data analytics can assist
decision making processes. Cities like Malaga, Amesterdam and
Boston are well-known cases for applying BDA techniques
to model the behavior of urban inhabitants. To cope with
computing and storage limitations in handling crowdsensed big
data, and improve data quality, the authors in [66] present the
architectural design of cloud based big data analytics. Authors
in [67]–[69] study the big data analytics using novel encryption
algorithms —such as homomorphic encryption— to eliminate
privacy concerns on medical data.

Integration of big data analytics and mobile crowd-sensing
introduces mutual benefits to both domains as the authors
in [70] consider mobile crowdsourcing applications to explore
the big data concept, understand the semantic of business data
and manage crowdsensed big data storage services. Recent
studies [71]–[74] elaborate on a vast number of business
opportunities that will arise from the IoT phenomena, combined
with Big Data analytics. Scalability remains a crucial challenge
in big data analysis; to address this issue, the authors in [75]
introduce a context-aware computing platform and a traffic
assistant application on top of it to automate the collection and
aggregation of large scale contextual data. Tranquilien [76]
and Snips [77] are real crowd-assisted applications that capture
urban mobility patterns about users’ daily habits, interactions
and surroundings to organize the users’ transportation activities
and improve the urban services. ParticipAct [78] is a real world
experiment that provides an architecture for analysis of large
scale crowd-sensed data. ParticipAct provides big data post-
processing facilities as multi-layered data views and the crowd-
sensed data-sets are published for researchers. The incentive
mechanism used in ParticipAct is a threshold-based technique
which basically renews the leased plan upon completion of a
specific number of sensing tasks.

As seen in the brief summary of big data-crowd-sensing
studies, data trustworthiness in the presence of adversaries
remains an open issue. In this paper, we present a new
framework to increase the trustworthiness of crowdsensed
big data. Indeed, location-based privacy of the participants
has been raised as an important open issue in mobile crowd-
sensing systems [79]–[81], we leave addressing user location
privacy to the future extensions of this study.

B. Challenges

When compared to the IoT-based sensing where any con-
nected device can provide sensing as a service, implementing
sensor networks with stand alone sensors leads to higher
deployment and maintenance costs [33], [82], limited com-
puting and data storage capabilities [83]. On the other hand,
unique characteristics of mobile crowd-sensing such as energy
limitation of mobile devices [84], security of stored data [85],
[86], quality of sensed data (e.g., accuracy and trustworthiness
of users) lead to further challenges in comparison to the
traditional mote-class sensor networks [46]. Particularly in
location-based crowd-sensing systems, task allocation (i.e.
user recruitment), task handling (i.e. queuing), task delegation
and reputation maintenance are reported as the four main



issues to be addressed before mobile crowd-sensing becomes
widely adopted [87]. A grand challenge in mobile crowd-
sensing is incentivizing the users since users are concerned
about the aforementioned limitations, and hence tend not to
share their resources through implicit recruitment. For these
reasons, policies to foster user participation have been largely
investigated in the literature [88], [89], along with surveys and
reviews to design effective incentive mechanisms in mobile
crowd-sensing [22], [25], [90]. As reported in [91], incentives
can be either monetary or non-monetary. For example, as a non-
monetary incentive, the study in [92], proposes incentivizing
the participants through leveraging social ties between them
and their connections.

Game theory is commonly used for user incentivization,
while maximizing the benefits of the crowdsourcer in the
presence of a central platform [93]–[95] and under the peer
data exchange settings [96]. As an example of game theoretic
incentivization, Shuyun Luo, et al. [97] formulate a Stackelberg
game between the platform and users for different cases.

Among all incentive techniques, gamification has received
limited attention so far when applied to mobile crowd-
sensing [30], [98], [99]. Gamification is applied in non-
gaming contexts by employing game mechanisms with the
objective of motivating users in active participation [28].
Wu et al. [98] propose to use gamification to reward users
proportionally to their contribution in determining best WiFi
hotspots in an area. Ueyama et al. [30] advocate gamification
for a generic framework to incentivize user contribution in
participatory mobile crowd-sensing. In [99] the authors show
that gamification or monetary reward techniques are not
efficient enough for collecting high quality data. Indeed, the
main objective of gamification is to increase the quantity of data.
To overcome such issue, a voting mechanism is introduced. In
crowdsourcing, use of gamification through badge awards is
studied for a popular platform like Stack Overflow [29]. The
objective is to analyze the impact of badges on user behavior,
and gamification has been proved to significantly improve user
motivation.

A rating system and a reward-based scheme is used to incen-
tivize users in [100]. Users’ reputation history is maintained
in order to allocate higher rewards to the users through a
reputation protocol. This approach leaves newly joining users
vulnerable to being eliminated before they can build reputation.
The authors in [101] introduce a Subgame Perfect Equilibrium
(SPE) as a bidding function to make payments to the users more
efficiently. Unlike previous studies leveraging only monetary-
based incentives [101], [102], in this paper, both game theoretic
monetary incentives and gamification methods are applied.

Primary motivation of most participants is to increase their
utility, especially in terms of monetary achievements. This
introduces vulnerabilities to the crowd-sensing platform in
the presence of malicious users who try to deceive crowd-
sensing platforms by providing false data [103]. Thus, data
trustworthiness is a crucial concern in mobile crowd-sensing
since the trustworthiness of the service is a key indicator of
effectiveness of the mobile crowd-sensing system. To address
this critical issue, the authors in [104] adapt a fuzzy system
with the quality of data and user reputation to evaluate the

Table I
NOTATION USED IN THE PAPER

NOTATION DESCRIPTION

n Number of participants in each

TS Set of tasks handled by the users in the set S

Wτ Number of winners at t-th recruitment

Ni(t) Number of assigned votes to user i at time t

wj Vote capacity of user-j

ri Submitted reading of user-i

V ali Task value of user-i

xi
j Actual vote of user-j for user-i

R
′

i(t) Updated trustworthiness of user i at the end of ti + δ

λs Measurement distance threshold

γr Rewarding threshold

Sij
r (t) Similarity indicator of task readings of users-i and j at time-t

ρm Malicious user probability

∫ Probability of negative votes for a malicious user

∆ij
Measurement distance between the values of sensing
tasks of user-i and j

δ Delay time between the 1st and 2nd phase

ti Submission time of task-i

ti + δ Collaboration time

τduration Duration of t-th recruitment

Vi Total vote capacity for user-i at the first phase

pi
t Total Payment to user-i at t-th recruitment

vR Total values of the tasks in the platform

Ri(t) Trustworthiness of user-i at the end of time-t

ci
t Total sensing cost to user-i at t-th recruitment

“HI-award” Category of users receiving a high reward

“LO-award” Category of users receiving a low reward

reliability of the sensed data in social participatory sensing
systems. In [105], the authors introduce a cheating-resilient
mobile crowd-sensing system by introducing user credibility-
driven recruitment along with theoretical analysis. To provide
a solution for this problem, we use the sensed data by other
users as a reference for comparison to ensure that the submitted
data is genuine. In the proposed method, users with higher
reputation and more badges have higher chance to participate
in sensing tasks.

Since the evaluation of data reliability in MCS has received
little attention so far, we propose a game theoretic approach to
model the interactions between users. In this game, a voting
phase is formulated to evaluate the quality of the crowd-sensed
data.

III. SYSTEM MODEL

The proposed framework consists of three phases: 1) user
recruitment, 2) game theoretic collaborative decision making,
3) gamification-based rewarding badges to the users. The
crowdsourcer/platform is responsible for matching users with
tasks; our model considers n > 1 users to perform tasks
during each assignment process. Fig. 1 illustrates the applied



Figure 1. Proposed System Model. The crowdsourcer/platform recruits users and assigns them sensing tasks. Users collaborate in voting phase to ensure data
trustworthiness and receive a reward upon providing useful feedback to the system.

algorithms in each phase and Table I lists the description of
the symbols used in the following subsections.

A. Phase 1: User Recruitment

In this phase, users are recruited based on the follow-
ing methods: Trustworthy Sensing for Crowd Management
(TSCM) [34], which introduces statistical reputation-awareness
to MSensing [106] and Social Network-Aided Trustworthiness
Assurance (SONATA) [43]. SONATA adopts a recommendation-
based Sybil detection approach for online social networks [107]
to assess user reputations, thus, it is purely vote-based. Both
of these schemes are based on a reverse auction procedure that
consists of user selection and rewarding steps.

The proposed approach in this paper adopts only the user
selection phase of either TSCM or SONATA. Selection between
either TSCM or SONATA depends on the operation mode of
the proposed framework, i.e., statistical or vote-based. TSCM
calculates instantaneous user reputation based on true and
false sensor readings. On the contrary, SONATA, determines
instantaneous user reputations based on votes cast by other
users that are sensing the same phenomenon.

User selection in TSCM, as well as in SONATA, is based on
the winner selection step of MSensing [108], which is a user-
centric reverse auction-based incentive mechanism. Participants
join the auction by reporting their sensing costs (i.e., bids)
as they are ensured that no user will be rewarded less than
their bid in the auction. The recruitment is completed in two
steps: winner selection and reward determination. MSensing
aims at maximum platform and user utility and selects the
winners based on their marginal contributions to the total
value of the sensed tasks and their sensing costs, and sorts

the users in descending order based on the marginal gain of
the platform for recruiting each participant. This also copes
with the situation where untruthful users aim to increase their
income by bidding higher than the actual sensing costs. While
selecting the users, TSCM and SONATA input user reputations
in the marginal contribution function so that users with higher
marginal contribution and higher reputation are more likely to
be selected.

SONATA relies on user votes to ensure trustworthiness. In
Eq. 1, wj is the vote capacity of user i, xi

j is the actual vote
of user i and Rj is the trustworthiness of user j at time t.

Ri(t) =

∑

j|cij=1
wjx

i
jRj(t)

∑

j|cij=1
wjRj(t)

(1)

In SONATA, the calculation of trustworthiness depends on
the votes from the other users and the initial reputation. The
vote-based user recruitment under the proposed scheme in
this paper defines a user reputation based on the quality of
submitted unlike SONATA where each user casts a negative or
positive vote based on similarity score votes of the sensed data.
In SONATA, each user casts a negative vote for a malicious
user with a certain probability, ∫ .

While the vote capacity of a user in SONATA is in-
creased/decreased by the positive/negative votes cast for the
user, in our proposed method, the vote capacity of a user
increases only if the user provides useful data. This is achieved
by the collaborative decision making mechanism, which is
defined in the next section. Given that n users are recruited at
time ti, all of the sensed data has to be sent to the platform
by ti + δ, where δ is a specific offset time. At time ti + δ,
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Figure 2. Collaborative decision making phase flowchart

all crowdsensed data is submitted to the platform, and all the
participants are aware of the task values.

B. Phase 2: Collaborative Decision Making

Phase 2 and Phase 3 involve the payment method; users
interact in a game and make decisions sequentially based
on the submitted tasks. We formulate the problem as a
Subgame Perfect Equilibrium (SPE), where players participate
in a subset of a game and their strategy represents a Nash
Equilibrium [109]. It is essential to assume that each player
behaves rationally and independently in each subgame.

1) Game Formulation: We define a repeated subgame
describing the users’ strategy and each task is assigned to
m users. The adopted strategies of a user are denoted by a
tuple, {V,N}, where V denotes that the user is voting, and N
denotes that the user is not voting. From a user’s standpoint,
participating in the voting phase is optional. The terms Voter

and Voted denote a user casting a vote and the user receiving
the vote, respectively. In case a user chooses to remain idle
(i.e., not voting), (s)he obtains a payoff equal to zero.

When a user chooses to vote, the algorithm compares
the measurement distance of both voter and voted data.
Measurement distance is defined as follows. Let i and j be
two smartphones each of which is equipped with multi-modal
sensor array used in crowd-sensing campaigns. Given that
ri and rj be two matrices of dimension n × 1 denoting the
sensor readings of users i and j at time t, respectively, the
measurement distance between the two users at time t (∆ij(t))
is calculated as shown in Eq. 2.

ri =









ri1
ri2
...
rin









, rj =









rj1
rj2
...
rJn









,∆ri,rj (t) =

√

√

√

√

n
∑

k=1

(|rik − rjk|)2

(2)
If the distance between two sensor measurements is below

a certain threshold, λs, both users receive an increased payoff.
Otherwise, the payoff of the voted decreases. A systematic
presentation of the game formulation and collaborative decision
making phases are illustrated in the flowchart in Fig. 2.

Determining vote reliability is at the last step of the game in
order to ensure that truthful users receive higher ratings with
respect to dishonest ones. This is achieved by having dishonest
users lose credit upon casting untruthful votes. Consequently,
upon increasing/decreasing their vote capacity, their reputation
is directly impacted by Eq. 1 and, in turn, on their reward.

2) Collaborative Voting: The collaborative voting phase
consists of two steps: i) Assessment of the quality of the
contributed data, ii) Investigation of the accuracy of the assigned
Voted user.

In step (i), the users compare the data to be judged with the
data they own at time ti + τ . This is a sequential procedure;
once the dissimilarity of the data reported/submitted by Voter

and Voted is above a threshold λs, the Voter casts a negative
vote. In the case of a negative vote, the platform increases
the trustworthiness of the crowdsensed data. As a result, the
voting capacity of the Voter casting truthful negative votes
increases. On the contrary, when a Voter casts untruthful votes,
the platform decreases its voting capacity.

In step (ii), the platform has knowledge of the value of the
tasks, so it can judge whether the voters have provided genuine



votes or not. Hence, the platform diminishes the vote capacity
of users that cast misleading votes. This game among the users
incentivizes users to collaborate for qualifying the value of
sensed tasks; as users keep casting correct votes, their vote
capacity keeps increasing.

The platform uses the following criteria to rate the par-
ticipants: i) the value of the sensed data they submit, ii)
trustworthiness of their votes. This rating is assigned according
to the measurement distance between the readings of user i and
j as formulated in Eq. 2. The calculated similarity indicator is
used for badge rewarding. As formulated in Eq. 3, the binary
similarity indicator between user i and user j at time t,( Sij

r (t))
indicates whether the data similarity criterion is satisfied.

Sij
r (t) =

{

1 if ∆ij(t)
max{|ri|}

≤ λs;

−1 if ∆ij(t)
max{|ri|}

> λs.
(3)

At the end of the collaborative voting phase, each user
earns a total voting capacity, which is computed by taking
into account positive and negative votes cast during each time
slot as shown in Eq. 4, where Sij

r (t) is the similarity rating
feedback that i receives from its neighbors.

V
′

i (t) =

|Ni(t)|
∑

j=1|j∈Ni(t)

Sij
r (t)

Ni(t)
, (4)

At the end of voting, the reputation R
′

i(t) of each user is
re-calculated by using the following two parameters: 1) the new
collaborative vote capacity Eq. 5, and 2) the user’s reputation
Ri(t) defined during recruitment phase Eq. 1.

R
′

i(t) = V
′

i (t) +Ri(t). (5)

To obtain higher vote capacity, users are incentivized to provide
correct feedback. The voting capacity is used in the badge
rewarding step as the criteria for reward assignment. Thus,
hostile and misleading feedback to the system never leads to
awards.

C. Phase 3: Badge Rewarding

Incentive mechanisms typically focus on single user ac-
tions; on the contrary, gamification considers the overall user
contribution [110], making it more beneficial when applied to
long-term applications. In this paper, we employ a reward-based
gamification method that awards badges to users that satisfy a
certain reward level entry [29]. Distinguishing reliable/truthful
users increases both platform and user utility. Therefore, the
crowdsourcer tends to recruit users that contribute qualified
data in a trustworthy fashion.

In [29], two reward allocation mechanisms are proposed: 1)
absolute standard mechanism Mα, and 2) a relative standard
mechanism Mρ. The former issues badges when users provide
a certain level of effort whereas the latter awards badges when
users provide certain level of effort in comparison with the top
contributor. The relative standard mechanism is more robust
than the absolute mechanism because of being less susceptible
to the particular conditions of the platform. We adopt the

Table II
SIMULATION SETUP

PARAMETER VALUE

Terrain Size 1000m × 1000m
Sensing Range 30 m
Number of Users 1000

Task Arrival Rates 20; 40; 60; 80; 100/min
Initial Reputation Probability 0.5, 0.7, 0.9

Malicious User Probability 0.05

Task Value {1; 2; 3; 4; 5}

Measurement distance threshold λs < 10 or 20 percent
Bid value 1; 2; ...; 10
Probability of detecting a malicious user
in SONATA

0.20

Simulation duration 30 min

relative standard mechanism to select the winners of awards,
which awards users with a badge when their vote capacity
reaches a certain level.

In Phase 3, the users receiving a high reward are grouped in
the “HI-award” class, while users receiving a low reward are
grouped in the “LO-award” class (see Fig. 1). The platform
uses the users’ collaboratively computed vote capacity, in order
to distinguish the users, which is formulated in Eq. 5.

Ri(t) =

{

R
′

i(t) if Vi > γr, “HI-award”;

Ri(t) if Vi < γr, “LO-award”.
(6)

Equation 6 shows that each user is paid at least as equal as
its total cost. For users in “LO-award” class, their reputation
does not increase from the value they have achieved in the
user recruitment phase. While the members of the “HI-award”
category increase their reputation and, consequently, they obtain
a payment.

IV. PERFORMANCE EVALUATION

We simulate the proposed mechanism and compare
the system performance of SPE-based user recruitment
with the benchmark mechanism SONATA. The SPE-based
user recruitment operates in two modes: i) vote-based
(vote-based reputation + SPE), and ii) statistical reputation-
based (statistical reputation + SPE) modes. The former adopts
the user selection mechanism of SONATA [43] whereas the
latter adopts the user selection phase of TSCM [34], which is
a statistical reputation-based method.

A. Simulation settings

Similar to [111], the simulation environment consists of a
1000m × 1000m terrain. The number of participants varies
between 100 to 1000 users. We assume three different scenarios
with three different (50%, 70%, 90%) initial reputation of users
in the monitored terrain. The malicious user probabilities is
set to 5%. The duration of an event is set to 30 minutes
and the platform assigns sensing tasks under various arrival
rates, i.e. 20, 40, 60, 80, 100 tasks/min. The details of the
simulation setup are presented in Table II. Three metrics assess
the performance of the proposed framework:
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Figure 3. Platform Utility vs. sensing task arrival rate. Figures are plotted for different percentages of malicious users: a) Malicious users ratio = 0.03, b)
Malicious users ratio = 0.05, c) Malicious users ratio = 0.07.
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Figure 4. Average User Utility vs. sensing task arrival rate. Figures are plotted for different percentages of malicious users: a) Malicious users ratio = 0.03, b)
Malicious users ratio = 0.05, c) Malicious users ratio = 0.07.

1) Platform utility: Denotes the total received useful value
from the participants deducted by the total payments
awarded to the user as formulated in Eq. 7:

Uplatform =
∑

τ

(

vR(Wτ )−
∑

i

pi
τ

)

, (7)

where vR is the total values of the tasks in the platform.
Note that in both Eq. 7 and Eq. 8, piτ is the total payment
to the user i and ci

τ is the sensing cost of user i during
t. The parameter Wτ represents the number of winners
during the auction period τduration.

2) Average user utility: Denotes the difference between the
payment received from the platform and the sensing cost.
User utility is averaged by the total numbers of selected
users in crowd-sensing, and the total number of sensing
campaigns as shown in Eq. 8:

Uuser =

∑

t((
∑

i pi
τ −

∑

i ci
τ )/|Wτ |)

τduration
. (8)

3) Total amount of payment to malicious users: Denotes
the rewards made to malicious users. The objective of
the platform is to minimize such value to improve the
trustworthiness of contributed data.

B. Simulation results

Figure 3 demonstrates the platform impact of different
malicious user percentages in the terrain. As seen in Fig. 3,
increasing the probability of malicious users leads to higher

platform utility in all scenarios under SONATA and SPE-based
user recruitment modes. The reason is two-fold: 1) statistical
and vote-based reputation-aware modes of SPE are able to
detect malicious users and reduce their payments, thereby
leading to an increased platform utility, 2) by incentivizing
users to provide useful data, the value of received data is higher
in this framework.

At 5%–7% malicious user percentage, the maximum im-
provement over SONATA in terms of platform utility is as high
as 55% under the reputation-based SPE recruitment. When the
malicious population is set to 3% of the total crowd, platform
utility is still expected to increase but not as high as the former
two scenarios. As seen in the figure, the improvement is at
most 13%.

Figure 4 compares the three recruitment schemes in terms
of average user utility. As expected, the degradation of user
utility is not significant. The main reason lies in the fact that
the platform pays more users with high number of badges. We
observe that the statistical reputation-based method improves
SONATA by an average of 15% and outperforms the vote-based
SPE scheme. In the vote-based scheme, the users use more vote
capacity than in the statistical reputation-based scheme during
first voting phase. As a result, their sensing costs augment,
diminishing the utility. Having defined the metric in function
of both cost and income, to maximize user utility with fixed
incomes, it is necessary to reduce the sensing cost.

Figure 5 illustrates the total payment rewarded to malicious
users. The results clearly demonstrate significant improvements
over the SPE-based user recruitment provides when compared
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Figure 5. Reward to Malicious Users vs. sensing task arrival rate. Figures are plotted for different percentages of malicious users: a) Malicious users ratio =
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Figure 7. Platform Utility vs. Sensing Task Arrival Rate. Figures are plotted for different percentage of initial reputation: a) SONATA , b) Statistical reputation
+ SPE, c) Vote-based reputation + SPE.

to state-of-the art solutions like SONATA. The latter method
falsely rewards malicious users while SPE-based techniques
do not reward them at all. In SONATA, the malicious users
providing fake data and decreasing system trustworthiness are
assumed to aim to build bogus reputation; the adversaries
achieve this by manipulating their sensing values to satisfy a
predefined upper threshold. As a result, platform recognizes
them as trustworthy users. The platform continues to pay the
malicious users until their reputation reaches a lower threshold
where the adversary behavior is identified, and does not reward
these users any longer. In the proposed framework, SPE-based
techniques use badges to identify user trustworthiness and the
platform only rewards trusted users to improve both user and
platform utilities.

Figure 6 illustrates the average user utility when the initial
reputation varies between 50% and 90%. Having 90% initial
reputation results in the highest user utility especially in
statistical reputation+SPE whereas designation of 70% initial
reputation does not significantly improve user utility. This is
an expected phenomenon due to the following reason: Setting
the initial reputation to a high value will let the system start
with rewarding more users. On the other hand, as the users in
malicious behavior will be identified in time, the difference
between various cases in terms of user utility is not significant.

Meanwhile the platform achieves the highest utility when
the initial reputation is 50% as seen in Fig. 7. This is due
to the platform’s making conservative assumption instead of
aggressively recruiting many users. This phemonenon is more
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Figure 9. Average User Utility vs.Sensing Task Arrival Rate. Figures are plotted for two methods of game theoretic: a) Statistical reputation +SPE , b)
Vote-based reputation +SPE.
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Figure 10. Platform Utility vs.Sensing Task Arrival Rate. Figures are plotted for two methods of game theoretic: a) Statistical reputation +SPE , b) Vote-based
reputation +SPE .

obvious under SPE+statistical reputation-based recruitment
as users build reputation based on their readings but not on
other users’ recommendations and votes. Thus, it takes longer
time for the users to build reputation by cooperating with the
platform, which in turn increases the platform utility.

Figure 8 and Figure 9 illustrate applying different dissim-
ilarity thresholds on the development of platform and user
utility under the proposed SPE-based recruitment. Improving
the quality of sensed data is one of the main contributions of
this paper so the percentage of similarity between collected
data sets significantly affects the performance metrics. To
provide high quality data, two similarity threshold values are

chosen. The first threshold enforces the dissimilarity between
the collected data by the voter and voted to be less than 10%
whereas the second one enforces dissimilarity less than 20%.
Considering an dissimilarity threshold with higher range is
not rational as the aggregated data may vary significantly. In
vote-based reputation + SPE-based recruitment, by considering
a wider range of dissimilarity spectrum leads to higher user and
platform utility while in the case of statistical reputation + SPE-
based recruitment, both thresholds of dissimilarity percentage
introduce almost the same performance in user and platform
utility.

Figure 10 and Figure 11 compare the impact of absolute
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standard badge rewarding mechanism and relative standard
badge rewarding mechanism on user and platform utility under
statistical reputation + SPE-based recruitment and vote-based
reputation + SPE-based recruitment. The highest platform utility
is achieved by applying the relative standard mechanism in
both game-theoretic methods. This is because more users are
recruited in relative standard mechanism and more accurate
data is submitted to the platform (see Section III.C for detailed
explanation on the two mechanisms). As for the user utility, as
users are paid based on their announced costs, all participants
who are recruited will receive payments; hence under both
mechanisms, users will achieve almost the same utility.

V. CONCLUSION

Mobile crowd-sensing (MCS) has shown a great potential
to make available sensing and computing of large volumes of
data through smart phones, tablets and wearable technologies.
Motivating users for sensing and reporting big data in a reliable
manner is the key challenging issue for the success in MCS
platforms. In this paper, we designed a gamification incentive
framework to foster users participation in crowd-sensing and
to ensure trustworthiness of sensed big data.

Our proposed framework adopts the winner selection mech-
anism from a previously proposed method, namely, Social
Network-Aided Trustworthiness Assurance (SONATA) [43],
and improves the rewarding step by integrating reputation
of the users with the awarded badges. To receive badges,
users collaborate to build their reputation through a voting
system, derived from a repeated Subgame Perfect Equilibrium
(SPE). Extensive simulations prove that SPE method is: 1)
trustworthy, meaning that users provide useful data to achieve
higher income, 2) profitable for users, meaning that not only
each user is paid based on its true cost, but reliable users receive
higher payments. Moreover, based on simulation results, the
proposed SPE method prevents completely the platform to pay
to malicious users, i.e., their reward is zero. Meanwhile MCS
opens up a wealth of concerns about the involvement of users
and the accuracy and reliability of produced data. Clearly, as
shown in our proposed method, real time big data analytics is
required to take advantage of provided reliable data to make
comprehensive models of sensed events.

We are currently investigating the real-time cases of MCSs
where delay sensitive crowd-sensing tasks are assigned to

mobile users. Furthermore, we are extending the proposed
framework incorporating other trustworthiness features such
as mobility and residual power levels of participating devices,
as well as context awareness in crowd-sensing applications.
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