
IEEE ACCESS 1

SURF: subject-adaptive unsupervised ECG signal

compression for wearable fitness monitors

Mohsen Hooshmand§, Davide Zordan†, Tommaso Melodia‡, Michele Rossi†⋆

Abstract—Recent advances in wearable devices allow
non-invasive and inexpensive collection of biomedical signals
including electrocardiogram (ECG), blood pressure, respiration,
among others. Collection and processing of various biomarkers is
expected to facilitate preventive healthcare through personalized
medical applications. Since wearables are based on size- and
resource-constrained hardware, and are battery operated, they
need to run lightweight algorithms to efficiently manage energy
and memory. To accomplish this goal, this article proposes SURF,
a subject-adpative unsupervised signal compressor for wearable
fitness monitors. The core idea is to perform a specialized lossy
compression algorithm on the ECG signal at the source (wearable
device), to decrease the energy consumption required for wireless
transmission and thus prolong the battery lifetime. SURF lever-
ages unsupervised learning techniques to build and maintain,
at runtime, a subject-adaptive dictionary without requiring any
prior information on the signal. Dictionaries are constructed
within a suitable feature space, allowing the addition and removal
of codewords according to the signal’s dynamics (for given
target fidelity and energy consumption objectives). Extensive
performance evaluation results, obtained with reference ECG
traces and with our own measurements from a commercial
wearable wireless monitor, show the superiority of SURF against
state-of-the-art techniques, including (i) compression ratios up
to 90-times, (ii) reconstruction errors (RMSE) between 2%
and 7% of the signal’s range (depending on the amount of
compression sought), and (iii) reduction in energy consumption
of up to two-orders of magnitude with respect to sending the
signal uncompressed, while preserving its morphology. SURF,
with artifact prone ECG signals, allows for typical compression
efficiencies (CE) in the range CE ∈ [40, 50], which means that
the data rate of 3 kbit/s that would be required to send the
uncompressed ECG trace is lowered to 60 bit/s and 75 bit/s for
CE = 40 and CE = 50, respectively.

I. INTRODUCTION

WEARABLES can be integrated into wireless body

sensor networks (WBSN) [1] to update medical records

via the Internet, thus enabling prevention, early diagnosis and

personalized care. However, since they are required to be small

and lightweight, they are also resource constrained in terms

of energy, transmission capability, and memory.

In this article, we propose new data processing solutions for

the long-term monitoring of quasi-periodic electrocardiogra-

phy (ECG) signals. These biomedical traces are relatively easy

to measure, but are at the same time extremely valuable for the

aforementioned purposes. We consider the acquisition of such

signals through wearable devices like smart watches or chest

⋆Corresponding author. §Dept. of Computational Medicine and Bioinfor-
matics, University of Michigan, Ann Arbor, MI, US. †Dept. of Information
Engineering, University of Padova, via Gradenigo 6/b, 35131, Padova, Italy.
‡Dept. of Electrical and Computer Engineering, Northeastern University,
02115, Boston, MA, US.

straps [2], [3] and are concerned with prolonging the battery

time of these wearables through lossy signal compression.

We consider scenarios where wireless transmission of ECG

signals to some access point is required, so that the signal

can be stored and made available through cloud servers to be

analyzed by clinicians. Our approach consists of compressing

the ECG time series right on the wearable device, prior to

their transmission, so that the data to be stored and sent takes

a small portion of its original space. As we quantify below,

this leads to substantial energy savings (between one and two

orders of magnitude) and to prolonged battery life.

The proposed compression algorithm is based on unsuper-

vised neural maps for the construction of online dictionaries,

whose codewords are utilized to match input patterns. The

acquired biomedical signal, thanks to its quasi-periodic nature,

is decomposed into segments made up of samples between

consecutive signal peaks. We consider these segments as the

signal’s recurrent patterns. A preliminary training phase uses

the incoming segments to learn the signal distribution of

the actual subject. The synaptic weights of the neural maps

become progressively and adaptively tuned to approximate

such distribution, without any prior knowledge upon it. Note

that these weights represent the codewords. Once the dictio-

nary has been set up, each input segment is then encoded

through a Vector Quantization (VQ) approach, which selects

the best matching codeword and transmits its index to the

receiving end in place of the full data. Moreover, each new

data segment is also utilized to refine the dictionary in a

real-time, online fashion. This is particularly appealing since it

allows updating the dictionary to new subjects or to the same

subject if and when their signal statistics undergoes major

changes. We underline that, although our approach is here

designed and tested against ECG traces, it can be applied to

any quasi-periodic signal exhibiting recurrent patterns.

In a previous research paper [4], we devised a first

subject-adaptive compressor that builds and maintains dictio-

naries on the fly using Time Adaptive Self Organizing Maps

(TASOM), see [5]–[7]. As shown in that paper, these neural

networks have excellent learning and adaptation capabilities

and in general lead to high compression rates, reaching very

good performance were other algorithms typically fail. In this

work, we build on our previous research, and in particular

on the TASOM-based algorithm of [4], by proceeding along

two main axes: (i) first, we prove that TASOM-based dictio-

naries have some major limitations when new and sporadic

patterns arise, such as in the presence of artifacts caused, for

example, by motion of the wearer, (ii) given this, we design

and validate a new algorithm, called SURF, for “Subject-

Digital Object Identifier: 10.1109/ACCESS.2017.2749758

2169-3536 c© 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

IEEE ACCESS 2

adpative Unsupervised signal compressor for weaRable Fitness

monitors”, which overcomes the limitations of TASOM-based

schemes, while retaining their excellent performance in terms

of compression ratio. This is an entirely new design that com-

bines three different dictionaries with unsupervised learning

techniques, successfully coping with artifacts.

Two possible usage models for SURF are shown in Fig. 1.

The SURF compressor is run inside the wearable ECG mon-

itor, taking as input the raw ECG sequence and generating a

compressed bitstream. The latter is then sent over a wireless

channel to an access point (“scenario a”) or to a smartphone

(“scenario b”). The SURF decompressor is used to reconstruct

the original ECG signal and can either be implemented at an

Internet server (see scenario a) or at the wireless receiver (e.g.,

at the smartphone for scenario b). The wireless channel is used

to transport the compressed bitstream and to also update the

dictionaries that are utilized at the decompressor to reconstruct

the original ECG sequence.

SURF is based on the Growing Neural Gas (GNG) network

of [8]. With GNG, the dictionary size can be dynamically

adapted through the addition and removal of neurons. This

allows the exploration of new regions in the data space

without affecting the accuracy reached by the dictionary in

the regions that have been already explored. Also, with SURF

dictionaries are learned in a suitable feature space, with

reduced dimensionality with respect to the dimensionality

of the signal to be compressed. This makes it possible to

further enhance the compression efficiency and reduce the

cost of dictionary updates. In addition, an original dictionary

management scheme is adopted, where one dictionary is used

for compression, one for continuous learning and one for the

assessment of previously unseen patterns. Before being used

for compression, new codewords must pass the assessment

phase. Patterns that are still under assessment are not encoded

through the dictionary, but their compact (transform domain)

representation is sent instead. This allows achieving small

representation errors at all times, while effectively coping

with artifacts (see Section VIII) and refining the dictionaries

as the signal statistics change. Overall, SURF learns and

maintains dictionaries in a totally unsupervised and online

fashion, requiring less than 20kbytes of memory space, while

allowing for high compression ratios and small reconstruction

errors (usually within 2 and 7% of the signal’s peak-to-peak

range, depending on the compression factor).

Several codebook-based solutions were proposed in the lit-

erature, see, e.g., the Gain-Shape Vector Quantization (GSVQ)

method of [9]. GSVQ relies on offline learning, i.e., the code-

book is attained from pre-collected datasets and is then used at

runtime. With this approach, the codebook cannot be changed

if the signal statistics changes significantly and a stream of

residuals is transmitted to compensate for this. With GSVQ,

the achievable reduction in size for ECG signals is up to

35-fold, as opposed to the much higher performance attained

by SURF, which ranges from 50- to 96-fold (depending on the

frequency of artifacts in the input data). Also, the performance

of SURF is here compared against that of selected compression

algorithms from the literature including neural networks [4],

linear approximations [10], Fourier [11]–[13], Wavelet [14]

Wearable ECG

sensor

SURF

Compressor

Radio

Transceiver
SURF

Decompressor

SURF

Decompressor

Scenario a)

Scenario b)

Fig. 1: Communication diagram.

transforms and compressive sensing (CS) [15], [16]. SURF

surpasses all of them, achieving remarkable performance,

especially at high compression ratios where the reconstruction

error (Root Mean Square Error, RMSE) at the decompressor is

kept below 7% of the signal’s peak-to-peak amplitude, whereas

the RMSE of other solutions becomes unacceptably high.

A thorough numerical analysis of SURF, carried out on

the PhysioNet public dataset [17] and our own collected

ECG traces from a Zephyr Bioharness 3 device, reveals the

following:

i) SURF’s dictionaries gracefully and effectively adapt to

new subjects or to their new activities,

ii) the size of these dictionaries is kept bounded within

20 kbytes, making them amenable to implementation in

wireless monitors,

iii) high compression efficiency is reached (reductions in the

signal size from 50 to 96-fold),

iv) the original ECG time series are reconstructed at the

receiver with high accuracy, i.e., obtaining peak-to-peak

RMSEs within 7% and often smaller than 3% and,

v) compression allows saving energy at the transmitter,

leading to reductions of up to two orders of magnitude

at the highest compression ratios.

The reminder of this paper is structured as follows. In

Section II, we discuss previous work on lossy compression for

ECG signals. In Section III, we briefly review vector quanti-

zation, which we also exploit in our design. In Section IV,

we introduce the self-organizing maps, and in Section V we

describe an initial design based on them. This design is the

same of [4] and is discussed here for the sake of completeness

and for a better understanding of the more complex design of

Section VI, where we describe in detail the SURF compression

scheme. A thorough performance evaluation is carried out in

Section VIII, comparing SURF against state-of-the art solu-

tions for reference and own collected ECG traces. Conclusions

are drawn in Section IX.

The following Section III introduces some preliminary

notions on network quantization and Section IV summarizes

the main operational principles of self organizing maps, on

which the algorithms that are proposed in this paper rest. This

material can be skipped by an expert reader on these matters.

IEEE ACCESS 3

II. RELATED WORK

Compression algorithms for ECG signals can be grouped

into three main categories: Direct Methods, Transformation

Methods and Parameter Extraction Methods.

Direct methods, which include the Lightweight Temporal

Compression (LTC) [10], the Amplitude Zone Time Epoch

Coding (AZTEC) [18], and the Coordinate Reduction Time

Encoding System (CORTES) [19], operate in the time domain

and utilize prediction or interpolation algorithms to reduce

redundancy in the input signal by examining subsequent time

samples.

Transformation methods perform a linear orthogonal trans-

formation. The most widely adopted techniques are Fast

Fourier Transform (FFT) [11], Discrete Cosine Transform

(DCT) [20], and Discrete Wavelet Transform (DWT) [14].

The amount of compression they achieve depends on the

number of transform coefficients that are selected, whereas

their representation accuracy depends on how many and which

coefficients are retained. Although these algorithms can pro-

vide high compression ratios, their computational complexity

is often too high for wearable devices. Also, as we quantify

below, these methods are in general outperformed by linear

and dictionary-based approaches at high compression ratios.

Parameter extraction methods use Artificial Neural Net-

works (ANNs), Vector Quantization (VQ), and pattern recog-

nition techniques. This is a field with limited investigation

that has recently aroused great interest from the research

community. Unlike direct and transformation methods, the

rationale is to process the input time series to obtain some

kind of knowledge (e.g., input data probability distribution,

signal features, hidden topological structures) and utilize it to

get compact and accurate signal representations. The algorithm

that we propose in this paper belongs to this class. Other

representative algorithms are [4], [9], [21]–[24]. In [21], a

direct waveform Mean-Shape Vector Quantization (MSVQ)

is tailored for single-lead ECG compression. Based on the

observation that many short-length segments mainly differing

in their mean values can be found in a typical ECG signal,

the authors segment the ECG into vectors, subtract from each

vector its mean value, and apply scalar quantization and vector

quantization to the extracted means and zero-mean vectors

respectively. Differently from our approach, the segmentation

procedure is carried out by fixing the vector length to a

predetermined value. This avoids the computational burden

of peak detection, but it does not take full advantage of

the redundancy among adjacent heartbeats, which are in fact

highly correlated. Moreover, in MSVQ, dictionaries are built

through the Linde-Buzo-Gray (LBG) algorithm [25], without

adapting its codewords at runtime. In [9], Sun et al. propose

another vector quantization scheme for ECG compression,

using the Gain-Shape Vector Quantization (GSVQ) approach.

There, the ECG is segmented into vectors made up of samples

between two consecutive signal peaks. Each extracted vector is

normalized to a fixed length and divided by its gain to obtain

the so called shape vector. A codebook for the shape vectors is

generated using the LBG algorithm. After this, each normal-

ized vector is assigned the index of the nearest codeword in the

dictionary and a residual vector is encoded to compensate for

inaccuracies. The original length of each heartbeat, the gain,

the index of the nearest codeword and the encoded (residual)

stream are sent to the decoder. For the signal reconstruction

at the receiver, the decoder retrieves the codeword from its

local copy of the dictionary, performs a denormalization using

the gain and the length, and adds the residual signal. SURF

resembles [9] in the way signal segments are defined and in

the adoption of the GSVQ approach. Indeed, the main ECG

peaks are used to extract segments, which then constitute

the recurrent patterns to be learned. [22] distinguishes itself

from the previous schemes because it defines a codebook

of ECG vectors adaptable in real-time. The dictionary is

implemented in a one dimensional array with overlapped and

linearly shifted codewords that are continuously updated and

possibly removed according to their frequency of utilization.

In particular, an input vector that does not find a matching

codeword is added to the codebook, triggering the removal

of the codeword with the least number of matches. However,

no details are provided on ECG segmentation nor on how

ECG segments with different lengths are to be processed. A

compression approach based on vector quantization, where

dictionaries are built and maintained at runtime is presented

in [4]. In this paper, time adaptive self organizing maps

are utilized to reshape the dictionary as the signal statistics

change. As we show in Section VIII, while this approach has

excellent compression performance and gracefully adapts to

non-stationary signals, it is not robust to artifacts, i.e., the

quality of the dictionary degrades in the presence of sudden

changes in the signal statistics or of previously unseen patterns.

A compression scheme for quasi-periodic time series can

be found in [24], where the authors target the lightweight

compression of biomedical signals for constrained devices, as

we do in this paper. They do not use a VQ approach but

exploit sparse autoencoders and pattern recognition as a means

to achieve dimensionality reduction and compactly represent

the information in the original signal segments through shorter

segments. Quantitative results assess the effectiveness of their

approach in terms of compression ratio, reconstruction error

and computational complexity. However, the scheme is based

on a training phase that must be carried out offline and is thus

not suitable for patient-centered applications featuring previ-

ously unseen signal statistics. A taxonomy describing most

of these compression approaches, including their quantitative

comparison, can be found in the survey paper [26].

Our present work improves upon previous research as neural

network structures are utilized to build and adapt compact

representations of biomedical signals at runtime, utilizing

unsupervised learning. Our design uses multiple dictionaries

to ensure robustness against artifacts, still obtaining very high

compression ratios, and achieving small reconstruction errors

at all times.

III. PRELIMINARIES ON VECTOR QUANTIZATION FOR

SIGNAL COMPRESSION

Vector quantization is a technique originally conceived

for lossy data compression but also applicable to clustering,

IEEE ACCESS 4

pattern recognition and density estimation. VQ is a gener-

alization of scalar quantization of a single random variable

to quantization of a block (vector) of random variables [27].

Its motivation lies on the fundamental result of Shannon’s

rate-distortion theory, which states that better performance

(i.e., lower distortion for a given rate or lower rate for a

given distortion) can always be achieved by encoding vectors

instead of scalars, even if the data source is memoryless or

the data compression system is allowed to have memory. Let

x = [x1, x2, ..., xm]T ∈ R
m be an m dimensional input

random vector. A vector quantizer is described by:

• A set of decision regions Ij ⊆ R
m, j = 1, . . . , L, such

that Ij ∩ Ih = ∅, j, h = 1, . . . , L, j 6= h, and the union

of Ij (with j = 1, . . . , L) spans R
m.

• A finite set of reproduction vectors (codewords)

C = {yyyj}
L
j=1, yyyj = [yj1, yj2, . . . , yjm]T ∈ Ij ⊆ R

m.

This set is called codebook or dictionary. Each codeword

yyyj is assigned a unique index.

• A quantization rule q(·):

q(xxx) = yyyj if xxx ∈ Ij . (1)

This means that the jth decision region Ij is associated

with the jth codeword yyyj and that each vector xxx belong-

ing to Ij is mapped by (1) into yyyj .

A compression system based on VQ involves an encoder

and a decoder. At the encoder, the output samples from the

data source (e.g., samples from a waveform, pixels from an

image) are grouped into blocks (vectors) and each of them is

given as input to the VQ. The VQ maps each vector xxx onto

codeword yyyj according to (1). Compression is achieved since

the index j associated with yyyj is transmitted to the decoder in

place of the whole codeword. Because the decoder has exactly

the same dictionary stored at the encoder, it can retrieve the

codeword given its index through a table lookup. Note that,

for correct decoding, the dictionary at the decoder shall be the

same in use at the encoder at all times. We say that encoder

and decoder are synchronized if this is the case and that are

out-of-synchronism otherwise.

The quality of reconstruction is measured by the average

distortion between the quantizer input xxx and the quantizer out-

put yyyj . A common distortion measure between a vector xxx and

a codeword yyyj is the Euclidean distance d(xxx,yyyj) = ‖xxx− yyyj‖.
The average distortion is measured through the root mean

squared error (RMSE):

E[d(xxx,yyyj)] =

L
∑

j=1

∫

Ij

‖aaa− yyyj‖fxxx(aaa)daaa , (2)

where fxxx(·) is the probability density function of the random

vector xxx. The design of an optimal VQ consists in finding the

dictionary C and the partition of Rm that minimize the average

distortion. It can be proved that an optimal VQ must satisfy

the following conditions:

1) Nearest Neighbor Condition (NNC). Given the set of

codewords C, the optimal partition of R
m is the one

returning the minimum distortion:

Ij = {xxx : d(xxx,yyyj) ≤ d(xxx,yyyh), j 6= h} . (3)

This condition implies that the quantization rule (1) can

be equivalently defined as q(xxx) = argminyyyj
d(xxx,yyyj),

i.e., the selected yyyj is the nearest codeword to the input

vector xxx.

2) Centroid Condition (CC). Given the partition Ij , j =
1, . . . , L, the codewords are the centroids of the decision

regions.

Linde, Buzo and Gray, inspired by the k-means method for

data clustering, provided an iterative algorithm (the LBG

algorithm) to generate a vector quantizer that satisfies the

above conditions [25]. It essentially defines an initial dic-

tionary and proceeds by repeatedly computing the decision

regions (according to NNC) and improving the codewords

(according to CC) until the average distortion falls below

a given threshold. It can be formulated to address known

or unknown source statistics. In the last case, a large set

of input vectors, called training set, must be used to build

up the quantizer. In this paper, we adopt a VQ approach.

Input vectors for the quantizer are determined by subdividing

the original signal into segments between successive peaks.

Dictionaries are obtained exploiting artificial neural networks

and our primary interest is to obtain and update them in

an online fashion as the signal statistics change. Note that

the LBG algorithm does not natively support this, since it is

conceived for time-invariant dictionaries.

Since our reference scenario is a wearable-based healthcare

application, the proposed compression framework aims at

being as energy-efficient as possible. A problem that arises

with VQ is related to the search of the nearest codeword during

the quantization process, i.e., the codeword yyyj∗ ∈ C such that

yyyj∗ = argminyyyj
d(xxx,yyyj). In fact, the number of operations

performed in such phase affects the overall computational

complexity performance and, in turn, power consumption. To

speed up the search and thus save energy, we exploit the fast

dictionary search algorithm devised by Wu and Lin [28]. The

idea is to bypass those codewords which satisfy a kick-out

condition without the actual computation of the distortion for

the bypassed codewords. This is achieved by decomposing the

Euclidean distance and using the Cauchy-Schwarz inequality,

see [28].

IV. UNSUPERVISED DICTIONARY LEARNING THROUGH

SELF-ORGANIZING MAPS

The Self Organizing Map (SOM) and its time-adaptive

version (TASOM) are single layer feed-forward networks

having an input layer of source nodes that projects directly

onto an output layer of neurons. The SOM provides a

structured representation of the input data distribution

with the synaptic-weight vectors acting as prototypes.

For its output layer, we consider a square lattice A
with L neurons arranged in M rows and M columns.

The input space X is m-dimensional with input vectors

xxx = [x1, x2, . . . , xm]T ∈ X ⊂ R
m. The SOM input layer has

m source nodes, each associated with a single component of

the input vector xxx and each neuron in the lattice is connected

to all the source nodes. The links (synapses) between the

source nodes and the neurons are weighted, such that the j-th

IEEE ACCESS 5

neuron is associated with a synaptic-weight vector denoted

by wwwj = [wj1, wj2, . . . , wjm]T ∈ R
m, j = 1, . . . , L, where

L = M2 is the total number of neurons in A. Training is

unsupervised. Let {xxx(n)}Nn=0 be the training set of unlabeled

examples (training input patterns), selected at random from

X . The learning process proceeds iteratively, from n = 0
to n = N , where N should be large enough so that self

organization develops properly. At iteration n, the n-th

training input pattern xxx(n) is presented to the SOM and the

following three steps are performed [6].

Step 1: competition. The neurons compete among themselves

to be selected as the winning neuron, i.e., the one whose

synaptic-weight vector most closely matches xxx(n) according

to the Euclidean distance. Its index i(xxx) satisfies:

i(xxx) = argminj ‖xxx(n)−wwwj(n)‖ , j = 1, . . . , L . (4)

Step 2: cooperation. The winning neuron i(xxx) identifies the

center of a topological neighborhood of cooperating neurons

modeled by the function hij(n). If dij is the lateral distance

between i(xxx) and neuron j in A, then hij(n) is symmetric

around i(xxx) and its amplitude decreases monotonically with

increasing lateral distance dij . Moreover, hij(n) shrinks over

time. We set hij(n) = exp(−d2ij/(2σ(n)
2)) (unnormalized

Gaussian function), where σ(n) is the width of the topological

neighborhood, that exponentially decreases with increasing

time n [6].

Step 3: synaptic Adaptation. The synaptic-weight vector

wwwj(n) of neuron j at time n is adjusted through the equation:

wwwj(n+ 1) = wwwj(n) + η(n)hij(n)(xxx(n)−wwwj(n)) . (5)

Equation (5) has the effect of moving the synaptic-weight vec-

tor wwwi(xxx) of the winning neuron i(xxx) (and the synaptic-weight

vectors of the neurons in its topological neighborhood, through

hij(n)) toward the input vector xxx. The learning-rate parameter

η(n) starts at some initial value η(0) and then exponentially

decreases with increasing n through η(n) = η0 exp(−n/τ2),
n = 0, 1, . . . , where τ2 is a time constant. The synaptic

weight adaptation process proceeds according to (5) and can be

decomposed into two phases: an ordering phase, during which

the topological ordering of the weight vectors takes place,

followed by a convergence phase, which fine-tunes the feature

map and therefore provide an accurate statistical quantification

of the input space. As a general rule, the total number of

iterations allowing the map to develop properly should be at

least N = 1000 + 500× L [6].

Once the SOM algorithm has terminated, a nonlinear

transformation (feature map) Φ : X → A is obtained as

Φ(xxx) = wwwi(xxx), where the index i(xxx) is found using (4). Φ(·)
is a quantization rule as it approximates the input data space

X with the finite set of weights (prototypes) wwwj ∈ A. In

fact, the same weight vector wwwj is returned in response to

all the input vectors xxx for which Φ(xxx) = wwwj . Thus, the SOM

algorithm is a VQ algorithm. However, upon completion of

the learning phase, the SOM map stabilizes and further learn-

ing / adaptation to new input distributions is difficult. With

non-stationary signals, adaptive learning must be employed to

update the feature map. The Time-Adaptive Self-Organizing

Map (TASOM) achieves this by allowing the map to increase

the learning rate when the signal’s statistics changes and for

this reason is a more appealing technique with non-stationary

signals. The TASOM has been introduced in [7] improving

upon the basic SOM and preserving its properties in stationary

and non-stationary settings. In a TASOM, each neuron j,

j = 1, . . . , L, has a synaptic-weight vector wwwj ∈ R
m with

its own learning-rate ηj(n) and neighborhood width σj(n),
which are continuously adapted so as to allow a potentially

unlimited training of the synaptic-weight vectors. The reader

is referred to [7] for additional details.

V. A FIRST DESIGN: TASOM-BASED ECG COMPRESSION

In this section, we describe an initial design that uses the

TASOM unsupervised learning algorithm. First, we identify

as ECG segments the sequence of samples between consec-

utive ECG peaks and we use them to build a dictionary

that stores typical segments and is maintained consistent and

well representative through online updates. A diagram of the

proposed technique is shown in Fig. 2. The ECG signal is

first preprocessed through a third-order Butterworth filter to

remove artifacts. Hence, the fast peak detection algorithm

of [29] is employed to locate the signal peaks. Since the

segments may have different lengths, after their extraction, a

linear interpolation block resizes each segment from its actual

length rxxx(n) to a fixed length m. The resized segment is

termed xxx(n) = [x1(n), . . . , xm(n)]T , whereas

exxx(n) =

∑m
k=1 xk(n)

m
(6)

is its offset and

gxxx(n) =

(

m
∑

k=1

xk(n)
2/m

)1/2

(7)

is its gain. The normalization module applies the following

transformation to each entry of xxx(n):

xk(n)←
xk(n)− exxx(n)

gxxx(n)
, k = 1, . . . ,m . (8)

The normalized segment feeds the dictionary manager, which

uses it to update the dictionary, and the pattern matching

module, which returns the best matching codeword from the

dictionary and outputs its index. The segment’s original length,

offset, gain and codeword index are then sent to the receiver

in place of the original samples.

The dictionary manager is the key block of the

TASOM-based compressor. We designed it thinking of

a communication scenario entailing a transmitting wearable

device and a receiver, such as a smartphone. At any time

instant n, two dictionaries are maintained at the transmitter:

the current dictionary Cc(n), which is used to compress

the input signal, and the updated dictionary Cu(n), which

undergoes updating at each time instant through the TASOM

algorithm and is maintained to track statistical changes in

the input signal’s distribution. As for the dictionaries, we

consider a TASOM with L neurons. When the compression

IEEE ACCESS 6

filtering
fast peak
detection

segment
extraction

pattern
matching

biosignal

codeword
index

preprocessing chain

normalization

TASOM-based
dictionary
manager

updated
dictionary

current
dictionary

length,
offset

and gain

Fig. 2: Diagram of the TASOM-based compression algorithm.

scheme is used for the first time, a sufficient number N of

signal segments shall be provided as input to the TASOM

to perform a preliminary training phase. This training

allows the map to learn the subject signal’s distribution.

This may be accomplished the first time the subject wears

the device. After this, a first subject-specific dictionary is

available. It can be used for compression and can also

be updated at runtime as more data is acquired. Let us

assume that time is reset when the preliminary training

ends, and assume n = 0 at such point. The current and

updated dictionaries are Cc(0) = {cccc1(0), . . . , ccc
c
L(0)} and

Cu(0) = {cccu1 (0), . . . , ccc
u
L(0)}, respectively. Their codewords

ccc
c/u
j (0) represent the synaptic-weight vectors of the

corresponding neural (TASOM) maps. At time n = 0, we

have ccccj(0) = cccuj (0) = wwwj(0), j = 1, . . . , L. Let also assume

that the decompressor at the receiver is synchronized with

the compressor, i.e., it owns a copy of Cc(0). From time

0 onwards, for any new segment xxx(n) (n = 1, 2, . . .) the

following procedure is followed:

Algorithm 1 [TASOM-based compressor]:

1) Map xxx(n) onto the index of the best matching codeword

in Cc(n), i.e., map xxx(n) onto the index ixxx(n) such that

ixxx(n) = argminj ‖xxx(n)− ccccj(n)‖ , j = 1, . . . , L . (9)

2) Let d(n) = ‖xxx(n) − cccci (n)‖ be the distance between the

current segment and the associated codeword, where we use

index i as a shorthand notation for ixxx(n). Use xxx(n) as the

new input for the current iteration of the TASOM learning

algorithm and obtain the new synaptic-weight vectors wwwj(n),
j = 1, . . . , L.

3) Update Cu(n) by using the weights obtained in step 2, i.e.,

setting cccuj (n)← wwwj(n) for j = 1, . . . , L.

4) Let ε > 0 be a tuning parameter. If d(n)/‖xxx(n)‖ > ε, then

update Cc(n) by replacing it with Cu(n), i.e., Cc(n)← Cu(n)
and, using (9), re-map xxx(n) onto the index ixxx(n) of the best

matching codeword in the new dictionary Cc(n).
5) Send to the receiver the segment’s original length rxxx(n),
its offset exxx(n), gain gxxx(n), and the codeword index ixxx(n).
If Cc(n) has been modified in step 4, then also send Cu(n)
(that in this case is equal to the new Cc(n)).

Step 2 makes it possible to always maintain an updated

approximation of the input segment distribution at the trans-

mitter. With step 4, we check the validity of the approximation

provided by the current dictionary (the one used for com-

pression, which is also known at the receiver). The tunable

parameter ε is used to control the signal reconstruction fidelity

at the decompressor: if d(n)/‖xxx(n)‖ ≤ ε, codeword ccccixxx(n)(n)
is considered suitable to approximate the current segment,

otherwise Cc(n) is replaced with the updated dictionary Cu(n)
and the encoding mapping is re-executed. Note that the higher

ε, the higher the error tolerance and the lower the number of

updates of the current dictionary. On the contrary, a small

ε entails frequent dictionary updates: this regulates the actual

representation error and also determines the maximum achiev-

able compression efficiency.

At the receiver, the n-th ECG segment is reconstructed

by picking the codeword with index ixxx(n) from the local

dictionary, performing renormalization of such codeword with

respect to offset exxx(n) and gain gxxx(n) and stretching the

codeword according to the actual segment length rxxx(n).

VI. THE SURF COMPRESSION SCHEME

In what follows, the TASOM-based compressor of the

previous section is improved through the use of a more

flexible neural network architecture, aiming at the following

objectives.

O1) Objective 1 - “specializing the dictionary to new signal

areas”: we recall that the number of neurons in the TASOM

map remains fixed as time evolves and this entails that some

further refinement of the dictionary, whenever the signal

statistics undergoes major changes and new behaviors arise,

may not always be possible. In fact, from our experiments we

have seen that, at times, additional neurons may be beneficial

to specialize the dictionary upon the occurrence of new

patterns, while at the same time preserving what previously

learned. In that case, we do not want previous neurons to be

involved in the refinement as we are exploring a new area in

the input signal space, and we do not want to do this at the

cost of getting lower accuracies in the portion of space that

we have already inspected and successfully approximated.

In our new design, we accomplish this through a GNG

IEEE ACCESS 7

filtering

fast peak
detection

segment
extraction

biosignal

TX codeword
index

p
re

p
ro

c
e

s
s

in
g

 c
h

a
in

normalize

dictionary
manager

updated
dictionary

D3

current
dictionary

D1

TX length,
and offset

feature
extraction

pattern
matching

TX feature
vector

feature
vector

closest
codeword

feature
space

signal
space

normalized ECG
segment

reserved
dictionary

D2

add
codeword

to D2

move codeword
to D1 and D3

copy codewords
from D3 to D1

use codeword
to refine D3

dictionary management

Y

N

xxx(n) yyy(n) ccci∗(n)

d(yyy, ccci∗) ≤ εf i∗

yyy

Fig. 3: Flow diagram of the SURF compression algorithm: the dictionaries are learned in the feature space. Codewords can be

added or removed. When the distance between the best matching codeword in D1 and the current feature vector is higher than

a threshold, a new codeword is added to D2. That codeword is in an assessment phase until it is either permanently added (to

D1 and D3) or deleted (i.e., when no further matches occur). Dictionary D1 is used for (dictionary-based) compression, D3

for continuous learning. When a good match is found for an ECG segment, the compressor sends its length, offset and the

index of the matching codeword. Otherwise, the segment’s feature vector is sent along with its length and offset.

network [8]. This type of neural network incrementally

learns the topological relations in a given input signal set,

dynamically adding and removing neurons and connections,

adapting itself to previously unseen input patterns.

O2) Objective 2 - “reducing overhead”: we aim at further

reducing the overhead associated with maintaining and

transmitting the dictionary. This is achieved through two

techniques: 1) working within a suitable feature space, where

a number of features much smaller than the size of each

ECG segment suffices for its accurate representation; 2)

selective dictionary update. In the TASOM-based approach, a

dictionary is entirely replaced whenever any of its codewords

is no longer capable of approximating ECG segments

belonging to a given signal’s area within a preset accuracy.

Instead, in our new design codewords are selectively replaced

by new ones that better approximate the portion of signal

space that they are responsible for.

O3) Objective 3 - “coping with artifacts”: ECG signals

gathered from wearable devices are prone to artifacts,

caused, for example, by the body movements of the wearer.

Dictionary-based approaches are particularly sensitive to

artifacts as no existing codeword can adequately approximate

them. Dictionary updates, attempting to bring the codewords

closer to the new segments (i.e., the artifacts) are likely to

result in a degraded representation accuracy for the recurring

segments. However, these noisy segments must be accurately

represented, as these may indicate anomalous behavior that

could play an important role in the diagnosis of a disorder.

Our new compressor successfully copes with this by: 1)

sending features in place of full codewords whenever none

of the current codewords provide a satisfactory match and

2) concurrently starting an assessment phase for the new

pattern. In the assessment phase, a new neuron (codeword)

is temporarily added to a local dictionary, which is only

maintained at the source and is used for the evaluation of

new (or anomalous) patterns. The permanent addition of

such codeword to the main dictionary only occurs if further

segments are found to match it, which means that the new

segment has become recurrent.

Objectives O1, O2, and O3 are achieved through the SURF

compression algorithm that we describe in detail next. It

leverages a GNG neural structure to learn and maintain a

set of prototypes in the signal’s feature space in a totally

unsupervised fashion. This neural network structure has a

number L(n) of neurons, where n is the (discrete) time index,

which is updated as n← n+1 each time a new ECG segment

is processed.

A diagram of the SURF algorithm is shown in Fig. 3. The

signal is at first preprocessed through the same chain of Fig. 2,

involving filtering to remove artifacts, ECG peak detection and

segment extraction. After this, ECG segments are normalized,

resized and their offset is removed. As different ECG segments

may have different lengths, linear interpolation is used to resize

them to a fixed length m. Let xxx(n) = [x1(n), . . . , xm(n)]T be

the resized m-length ECG segment at time n. Offset removal

is achieved through:

xk(n)← xk(n)− exxx(n) , k = 1, . . . ,m , (10)

where exxx(n) is defined in (6). After this, the normalized

IEEE ACCESS 8

ECG segment xxx(n) is fed to a feature extraction block which

reduces the dimensionality of xxx(n) through the computation

of a number f < m of features. This mapping is denoted

by Ψ : R
m → R

f and we have: yyy(n) = Ψ(xxx(n)), where

yyy(n) = [y1(n), . . . , yf (n)]
T . For our experimental results,

this mapping corresponds to the DCT transform of xxx(n), by

retaining the first (low-pass filtering) f coefficients in the

transform (frequency) domain. We underline that our method

is rather general and other transformation and coefficient

selection methods can be applied.

At this point, the SURF dictionaries come into play.

Differently from the TASOM approach, three dictionaries

are maintained at the transmitter: D1) the current dictionary

Cc(n) = {cc1(n), . . . , c
c
L(n)(n)}, D2) the reserved dictionary

Cr(n) = {cr1(n), . . . , c
r
R(n)(n)} and D3) the updated

dictionary Cu(n) = {cu1 (n), . . . , c
u
L(n)(n)}. D1 and D3

contain the same number of codewords at all times, whereas

D2 contains R(n) codewords, where in general R(n)≪ L(n).
D1 is used for compression at the source (transmitter) and has

to be known by the decompressor at the receiver. This implies

that any changes to D1 should be promptly communicated to

the decompressor so that the dictionaries at source and at the

receiver remain synchronized at all times. Instead, D2 and

D3 only need to be maintained at the source (transmitter).

Dictionary D1: the current dictionary D1 contains the code-

words which are currently in use. For each new feature

segment yyy(n), the closest codeword cci∗(n) in D1 is fetched

(“pattern matching” in Fig. 3) by minimizing the distance

d(yyy(n), ccccj(n)) = ‖yyy(n) − ccccj(n)‖ for all codewords ccj(n) ∈
Cc(n), i.e.,

i∗ = argminj d(yyy(n), ccc
c
j(n)) , j = 1, . . . , L(n) . (11)

If d(yyy(n), cccci∗) is smaller than a preset error tolerance εf > 0,1

the codeword cccci∗ from D1 is deemed a good candidate to

approximate the current ECG segment. In this case, we say

that yyy(n) is matched by cccci∗ . Index i∗ is thus sent to the

receiver in place of the entire feature set yyy(n). At the receiver

side, a copy of D1 is maintained at all times and is used to

retrieve cccci∗ from its index.

Dictionary D2: if d(yyy(n), cccci∗) > εf , none of the codewords

in D1 adequately approximates the current feature vector,

which is then termed unmatched. Note that this may be a

consequence of changes in the signal statistics such as sudden

variations in the subject’s activity, to pathological (and often

sporadic) ECG segments or to measurement artifacts. In

these cases, we check for a match in the reserved dictionary

D2 (Cr(n)). If a match occurs, the matching count of the

matching codeword in D2 is increased by one. Otherwise, a

new codeword is added to D2. This is achieved by adding

a neuron to dictionary Cr(n) and using feature vector yyy(n)
to initialize its synaptic-weight vector. We stress that the

codewords in D2 are not yet ready for use in the signal

1Here, εf represents the error tolerance in the feature space, which must
not be confused with that in the signal space ε, that was used for the
TASOM-based compressor of Section V.

compression, but they have to go through an assessment

phase. D2 behaves as a buffer with maximum size Lmax: if

a codeword in D2 is matched γ times (with γ being a preset

parameter), it is removed from D2 and added to D1. If instead

D2 gets full and a new codeword has to be added to it for

assessment, the oldest codeword from D2 is deleted and the

new one takes its place. The rationale behind the assessment

phase is that new codewords are added to explore a new

portion of the signal’s feature space, and this exploration is

prompted by the measurement of previously unseen patterns.

Now, if these patterns are very unlikely to occur again it

does not make any sense to add them to dictionary D1 and

it is better to send the feature vector yyy(n) for these isolated

instances. In turn, yyy(n) will be utilized to reconstruct the

pattern at the receiver. Instead, if after their first appearance,

these become recurring patterns, it does make sense to add

them to D1 (and D3 for their continuous refinement). Note

that the combined use of D1 and D2 makes it possible to

specialize the dictionary to new signal areas (new patterns, i.e.,

objective O1) and as well to cope with artifacts (objective O3).

Dictionary D3: this dictionary has the same number of

neurons of D1 but its codewords are updated for each new

matched ECG segment. That is, when d(yyy(n), cccci∗) < εf
the feature vector yyy(n) is also used to update dictionary Cu(n).

As stated above, dictionary D2 and D3 are continuously

updated: D3 when a match occurs between yyy(n) and a code-

word in D1, whereas D2 when no codeword in D1 matches

yyy(n). In this case, if yyy(n) matches some codeword in D2, the

corresponding matching count is increased, otherwise D2 is

extended through the addition of a new codeword. Dictionaries

D1 and D3 are initialized with L(0) neurons, where L(n) is

always bounded, i.e., L(n) ≤ Lmax at all times, where Lmax

is a preset parameter to cope with memory constraints. At

time 0, D2 is empty and the number of neurons therein is

likewise bounded by Lmax. Similarly to the TASOM-based

approach, when the compression scheme is activated for the

first time, a sufficient number N of signal segments must be

provided as input to perform a preliminary training phase.

Such training allows the dictionaries to learn the subject

signal’s distribution. An observation is in oder. Basically, the

just described approach dynamically switches the compression

strategy between a dictionary-based technique and a standard

transform-based one (i.e., sending a number of DCT coeffi-

cients for the current segment). The dictionary is used when it

approximates well the current ECG pattern. Otherwise, a DCT

compression approach is exploited. Note that this makes is

possible to achieve high accuracy at all times, while adaptively

(and automatically) tuning the instantaneous compression rate

(as a function of the characteristics of the current segment).

Also, this allows refining the main dictionary by only including

those patterns that have become recurrent. As we shall see, this

provides excellent accuracy performance, resilience against

artifacts, while retaining most of the benefits of dictionary-

based schemes (very high compression rates).

For the formal description of the SURF algorithm, let

us assume that time is reset when the preliminary training

IEEE ACCESS 9

ends and assume n = 0 at such point. The codewords of

D1 and D3, at time n = 0, Cc(0) = {cccc1(0), . . . , ccc
c
L(0)(0)}

and Cu(0) = {cccu1 (0), . . . , ccc
u
L(0)(0)} are set equal to the

synaptic-weight vectors at the end of the initial training,

i.e., ccccj(0) = cccuj (0) = wwwj(0), j = 1, . . . , L(0). We also

assume that the decompressor at the receiver is synchronized

with the compressor, that is, it owns a copy of D1 (Cc(0)).
Also, for any codeword ccc belonging to any dictionary, if

d(yyy(n), ccc) < εf we say that yyy(n) is matched by ccc. For the

continuous update of the synaptic weight vectors (codewords)

in dictionary D3, we apply the following Algorithm 2, which

rests on the Hebbian learning theory in [30], [31].

Algorithm 2 [Synaptic weight vector update]:

At the generic time n, let yyy(n) and i∗ respectively be the

current feature vector and the index associated with the best

matching codeword in D1, i.e.,

d(yyy(n), cccui∗(n)) ≤ d(yyy(n), cccuj (n)) , j = 1, . . . , L(n) . (12)

We have that i∗ is the winning neuron in map (dictionary)

D1 for this input (feature) vector yyy(n) and its synaptic weight

vector is wwwi∗ = cccui∗(n), with wwwi∗ ∈ R
f . The update rule for

wwwi∗ is:

wwwnew
i∗ ← wwwi∗ + ǫb(yyy(n)−wwwi∗) . (13)

Moreover, when we have a match, an edge will be created

in the neural map between i∗ and i∗∗, where i∗∗ is the

second-closest neuron to the current input vector yyy(n). If i∗

and i∗∗ are already connected with an edge, no new edge will

be added. After that, we update the synaptic weight vector of

every neuron j that is a neighbor of i∗, i.e., that is connected

to it with an edge:

wwwnew
j ← wwwj + ǫn(yyy(n)−wwwj) , (14)

where ǫb and ǫn are constant learning rates. The new weight

vectors of (13) and (14) correspond to the updated codewords

for dictionary D3.

Keeping the above definitions and update rules into

account, from time 0 onwards, for any new feature segment

yyy(n) (n = 1, 2, . . .) the following procedure is executed:

Algorithm 3 [SURF]:

Step 1) for yyy(n), find the indices of the two closest codewords

in D1 (Cc(n)), which are respectively called i∗yyy(n) and i∗∗yyy (n),
where

i∗yyy(n) = argminj d(yyy(n), ccc
c
j(n)) , j = 1, . . . , L(n) (15)

and i∗∗yyy (n) is the index of the second-closest codeword in D1.

Step 2) Let d(n) = d(yyy(n), cccci∗(n)) be the distance between

yyy(n) and the closest codeword cccci∗(n), where we use i∗ as

a shorthand notation for i∗yyy(n). If d(n) ≤ εf move to Step

3, otherwise act as follows. Check the reserved dictionary

D2 to see whether any of its codewords matches yyy(n). If

this is the case, then increase by one unit the matching count

for that codeword: if this count reaches γ, this codeword

is removed from D2, added to D1 and D3 (increasing their

size, i.e., L(n) ← L(n) + 1) and transmitted to the receiver.

If no matching codeword exists in D2, the feature vector

yyy(n) is sent to the receiver along with the length and offset

of the corresponding signal segment. Also, a new codeword

(neuron) is added to the reserved dictionary D2 and this

neuron has a weight vector www = yyy(n). Go to Step 4.

Step 3) Here, d(n) ≤ εf . 3.1) Use the weight vector of neuron

i∗ as the approximating vector for yyy(n). Hence, send index i∗

to the receiver along with the length and offset of the signal

segment associated with yyy(n). 3.2) Use yyy(n) to update D3

through Algorithm 2 above. 3.3) For dictionary D3 do the

following. Increase the age aj of all the neighbors j of neuron

i∗. Remove any edge with age aj ≥ amax, with amax being

a preset parameter. If this makes it so a neuron remains with

no neighbors (no edges connecting it to other neurons in D3),

then remove this neuron from both D1 and D3 and decrease

their size, L(n) ← L(n) − 1. 3.4) For dictionary D1 do the

following. The distance between the input yyy and the nearest

neuron i∗ will be added to the local accumulated error of

neuron i∗:

error(i∗)new ← error(i∗)old + d(yyy(n), cccci∗(n)) . (16)

Step 4) Dictionary management. The following dictionary

update procedure follows the growing neural gas network

algorithm of [8]. Every λ time steps, we check the current

dictionary D1 for its possible update as follows: 4.1) Each two

corresponding neurons in Cc(n) and Cu(n) will be considered.

If their distance is greater than εf , the weight vector of the

neuron (codeword) in Cc(n) will be replaced by the one

of the corresponding neuron in Cu(n). The weight vectors

(codewords) in Cc(n) that are updated as a consequence of

this check are sent to the receiver. 4.2) For dictionary D1,

the neuron p (synaptic weight vector wwwp) with the maximum

accumulated error is determined. A new neuron r (synaptic

weight vector wwwr) is generated halfway between p and its

neighbor q that has the largest accumulated error:

wwwr = 0.5(wwwp +wwwq) . (17)

The new neuron r is then added to both D1 and D3 and is also

transmitted to the receiver to update the decoder’s dictionary

D1. For both D1 and D3, remove the edge connecting neurons

p and q (edge (p, q)) and add the two edges (p, r) and (r, q).
Multiply the accumulated error of p and q by constant α and

initialize the accumulated error of r with the new value of

the accumulated error of p.

Step 5) All the accumulated errors will be multiplied by a

second constant β. After this, go to Step 1 for the next input

segment.

In the above algorithm, Step 2 checks whether the current

segment is matched by one codeword in the current dictionary

D1. If not, the current feature vector is tagged as an unknown

pattern and is added to dictionary D2 to go through an assess-

ment phase. If instead a matching codeword in D1 is found,

this codeword is used in Step 3 to approximate the current

segment. This is achieved by sending the index associated with

this matching codeword to the receiver, which owns a copy of

IEEE ACCESS 10

dictionary D1 and uses the index to retrieve the approximating

codeword. With Step 4, we periodically perform a dictionary

assessment, i.e., we check whether the current dictionary D1

is still well representative of the actual input distribution. This

assessment is accomplished by checking the distance between

each codeword in D1 and its corresponding codeword in D3: if

this distance gets too large (namely, larger than the maximum

error tolerance εf), the codeword in D1 is replaced by its

counterpart in D3. Note that, the higher εf , the higher the

error tolerance and the lower the number of updates that

are carried out for the current dictionary D1. Conversely, a

small εf entails frequent dictionary updates. This regulates the

actual representation error and also determines the maximum

achievable compression efficiency. Moreover, we stress that

in Step 4 the update procedure is solely applied to those

neurons that need to be updated as opposed to our previous

design of Section V, where the whole dictionary is updated.

This helps reduce the overhead associated with the dictionary

update operation (see objective O2).

At the receiver, when compression is achieved picking

the closest codeword from dictionary D1 and sending the

corresponding index i∗, the n-th segment is reconstructed

by picking the codeword yyy∗ with index i∗ from the local

dictionary, moving it into the time domain through the inverse

feature map, i.e., xxx∗ = Ψ−1(yyy∗). Instead, when the feature

vector yyy(n) is transmitted, the decompressor directly applies

xxx∗ = Ψ−1(yyy(n)) to the received feature vector. In both cases

then, the offset exxx(n) is added back to xxx∗ and the latter is

resized to the actual segment length rxxx(n). This returns the

reconstructed segment x̂xx(n).

VII. HARDWARE ARCHITECTURE, ENERGY MODEL AND

PERFORMANCE METRICS

To evaluate the energy consumption, following the ap-

proach of [32], [33] we compute three metrics:

1) compression energy: the energy consumption to execute

the compression algorithm on the wearable node,

2) transmission energy: the energy drained by the the trans-

mission of the (either compressed or original) signal over

a wireless channel, and the

3) total energy, given by the sum of the previous two

metrics.

1) Compression energy. The compression energy has been

evaluated by taking into account the number of operations

performed by the Micro-Controller Unit (MCU), i.e., the

number of additions, multiplications, divisions and compar-

isons. Then, according to the considered sensor hardware,

we translated these figures into the corresponding number

of clock cycles Ncc and, from there, we derived the energy

expenditure, as in [32]. For the energy consumption plots

of Section VIII-A, we considered a Cortex M4-90LP [34]

processor, whose number of clock cycles per operation is

detailed in Table 7-1 of [35]. As for the energy consumption

per clock cycle, Ecc, in active mode the Cortex M4-90LP

consumes 10.94 µA with the MCU operating at 1 MHz and

the supply voltage being +3 V:

Ecc = 10.94 µA× 3 V/1 MHz = 32.82 · 10−12 J . (18)

1) Transmission energy. When ECG samples are measured

using a Zephyr Bioharness 3 module [36], the sampling

frequency is 250 Hz, and each ECG sample takes 12 bits. This

amounts to a transmission rate for a continuously streamed

(uncompressed) ECG signal of 3 kbit/s. This is the setup

considered for the results in Section VIII-B, whereas in

Section VIII-A the bitrate is of 3.96 kbit/s, as the sampling

rate is higher (360 Hz with 11 bits per sample). The raw ECG

signal is then compressed using SURF and transmitted through

the wireless channel. Next, we detail how we estimated the

energy consumption associated with the transmission of data

packets as they travel from the wearable device to the data

receiver. Towards this end, we consider the energy consump-

tion figure of the Bluetooth LE Texas Instruments CC2541

radio [37], whose energy consumption per transmitted bit is

Ebit = 300 nJ/bit (18.2 mA at 3.3 V considering a physical

layer bitrate of 2 Mbps and the radio in active mode). The

procedure that we now describe can be applied to any other

radio, by plugging the corresponding Ebit.

The energy consumption for each transmitted packet

is obtained as Epacket = Ebit × packet size, where

packet size = header size+ payload size. No energy

consumption is accounted for when the radio is in idle

mode (between packet transmissions). The packet transmission

process follows the Bluetooth LE protocol in the connected

mode (in our case, a point-to-point connection between only

one master and only one slave). In Bluetooth LE, a data

packet consists of the following fields: preamble (1 byte),

access address (4 bytes), link layer header (2 bytes), L2CAP

header (4 bytes), which are followed by 3 bytes of ATT

command type/ attribute ID, Ldata information bytes (contain-

ing application data), and the CRC field (3 bytes), see [38].

This leads to a total protocol overhead of header size =
17 bytes. For our results, we picked a payload size of

Ldata = payload size = 105 unencoded information bytes

(leading to a protocol overhead of (17/122)× 100 = 13.9%),

although the numerical results can be promptly adapted for any

other value. Each side communicates with the other on a given

period called Connection Interval (CI), whose minimum value

is 7.5 milliseconds. Each communication instance between

the master and the slave is called a communication event,

subsequent communication events are separated by CI seconds

and a maximum of nmax data packets can be transmitted

within this period. The maximum number of packets per

seconds PPSmax that can be exchanged between the two

devices is thus: PPSmax = nmax/CImin, with CImin expressed

in seconds, and the maximum throughput is obtained as

Thrmax = PPSmax × payload size . (19)

Here, nmax depends on the operating system of the terminals,

for example, at the time of writing, Android has nmax = 6,

whereas iOS has nmax = 4. Using (19), the maximum

throughput for a wireless ECG monitor connected with an

Android terminal (nmax = 6), is thus: Thrmax = PPSmax ×
payload size = (6/0.0075) × 105 = 672 kbit/s. This

maximum throughput is more than enough to support the

transmission of the raw ECG signal (3 to 4 kbit/s).

IEEE ACCESS 11

The number of transmitted packets is computed according

to the number of information bits that are to be transmitted by

the radio, segmenting the bitstream into multiple data packets

according to a fixed payload length of 105 information bytes.

The energy consumption associated with the transmission of

a single data packet is obtained as Epacket, as per the above

discussion. Finally, the total energy consumption is computed

as the sum of processing and transmission energy.

Two additional metrics are considered in the performance

analysis, i.e., the Compression Efficiency (CE) and the Root

Mean Square Error (RMSE). CE has been computed as the

ratio between the total number of bits that would be required

to transmit the full signal divided by those required for the

transmission of the compressed bitstream. The RMSE is used

to represent the reconstruction fidelity, as is computed as

the root mean square error between the original and the

compressed signals, normalizing it with respect to the signal’s

peak-to-peak amplitude (p2p), that is

RMSE =
100

p2p

(

∑K
i=1(xi − x̂i)

2

K

)1/2

, (20)

where K corresponds to the total number of samples in the

ECG trace, xi and x̂i are the original sample i and that recon-

structed at the decompressor (receiver side), respectively. The

SURF default parameters have been set as follows: ǫb = 0.01,

ǫn = 0.005, α = 0.5, β = 0.995, γ = 3, Lmax = 10, λ = 200
and amax = 100. These parameters were selected empirically

and provide a good tradeoff between RMSE and overhead

(memory and compression efficiency).

VIII. NUMERICAL RESULTS

In this section, we show quantitative results for the proposed

signal compression algorithms, detailing their energy con-

sumption, compression efficiency and reconstruction fidelity.

In Section VIII-A, we first assess the performance of the

considered compression algorithms for the reference ECG

traces from the PhysioNet MIT-BIH arrhythmia database [17].

In Section VIII-B, we extend our analysis to (artifact prone)

ECG traces that we collected from a Zephyr BioHarness 3

wearable chest monitor.

A. PhysioNet ECG traces

For the first set of graphs, we considered the following ECG

traces from the MIT-BIH arrhythmia database [17]: 101, 112,

115, 117, 118, 201, 209, 212, 213, 219, 228, 231 and 232,

which were sampled at rate of 360 samples/s with 11−bit

resolution. Note that not all the traces in the database are

usable (some are very noisy due to heavy artifacts probably

due to the disconnection of the sensing devices) and an

educated selection has to be carried out for a meaningful

performance analysis, as done in previous work [17], [39].

The above performance metrics were obtained for these ECG

signals and their average values are shown in the following

plots.

As a first result, in Figs. 4 and 5 we show the compression

efficiency and the total energy consumption of SURF, both

plotted versus the RMSE by varying εf as a free parameter.

In these plots we quantify the impact of the feature space

size f , corresponding to the number of DCT coefficients that

are retained and stored in the feature vector yyy(n). Two SURF

variants were implemented:

1) SURF-TD. It is a time domain implementation of SURF

dictionaries, i.e., the feature vectors yyy(n) that are inputted

into the dictionary correspond to the original signal segments,

i.e., yyy(n) = xxx(n). If an input segment is unmatched, the

corresponding DCT coefficients are transmitted to the receiver.

So, in this case the DCT transform is only applied if a new

pattern that the current dictionary is unable to approximate

is detected. In this case, f of its DCT coefficients are sent

to reconstruct it at the receiver (f = 200 is used for the

SURF-TD curve in Fig. 4).

2) SURF. It is the feature domain implementation that we have

described in Section VI, for which we considered the following

values for the feature space size f ∈ {50, 75, 100, 150, 200}
(see Figs. 4, 5 and 7).

From Fig. 4, we see that SURF achieves the highest CE,

up to 90-fold for the considered PhysioNet signals, whereas

time domain processing allows for maximum efficiencies of

60-fold. As expected, increasing f entails a smaller RMSE

at the cost of a smaller CE. However, we see that when f
increases beyond 100 the RMSE performance gets affected

and starts decreasing. In these cases, SURF behaves similarly

to its time domain counterpart. This is because dictionary

construction in feature space allows for more robustness and

generalization capabilities than working in the time domain,

which may lead to overfitting codewords to specific signal

examples. This means that an optimal value of f can be

identified, which in our case is around f ≃ 100. Fig. 5

shows the total energy consumption (adding up processing and

transmission) and we see that savings of almost two orders of

magnitude with respect to the case where the signal is sent

uncompressed (“no-compression”) are possible. This is further

discussed below.

In Fig. 6, we plot RMSE vs CE for SURF, compar-

ing it against the TASOM-based algorithm of Section V

and selected lossy compression techniques from the litera-

ture based on DCT [20], DWT [14], linear approximation

LTC [10], GSVQ [9], and schemes based on compressive

sensing: BSBL [40] and SOMP [15]. At very low compression

efficiencies LTC outperforms DCT in terms of RMSE. DWT

does a much better job than DCT in terms of RMSE, especially

at relatively small compression efficiencies, say, smaller than

30, but it is unable to reach higher CEs, for which LTC,

TASOM and SURF are to be preferred. As for the CS-based

algorithms, neither SOMP nor BSBL provides satisfactory

performance. The compression efficiency of SOMP is rather

small and the corresponding RMSE tends to diverge for, e.g.,

CE larger than 5. As we shall discuss shortly, although the

BSBL compressor has the lowest energy consumption, its

overall energy expenditure is high as this approach is less

effective in terms of CE than other schemes such as dictionary

IEEE ACCESS 12

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100

R
M

S
E

Compression Efficiency (CE)

SURF-TD
SURF (f = 50)
SURF (f = 75)

SURF (f = 100)
SURF (f = 150)
SURF (f = 200)

Fig. 4: SURF – RMSE vs compression efficiency.

0

1

2

3

4

5

6

7

8

10−8 10−7

R
M

S
E

Total Energy Consumption [Joule/bit]

SURF-TD
SURF (f = 50)
SURF (f = 75)

SURF (f = 100)
SURF (f = 150)
SURF (f = 200)

no-compression

Fig. 5: SURF – RMSE vs total energy consumption.

0

5

10

15

20

0 10 20 30 40 50 60 70 80 90

R
M

S
E

Compression Efficiency (CE)

DCT
DWT

GSVQ
BSBL
SOMP

LTC
TASOM

SURF (f = 100)

Fig. 6: RMSE vs CE – comparison of compression algorithms.

0

5

10

15

20

0 20 40 60 80 100

D
ic

ti
o

n
ar

y
S

iz
e

[k
b

y
te

]

Compression Efficiency (CE)

SURF-TD
SURF (f = 50)
SURF (f = 75)

SURF (f = 100)
SURF (f = 150)
SURF (f = 200)

Fig. 7: SURF dictionary size vs CE. The tradeoff curves are

obtained by varying the error tolerance εf .

based (GSVQ) and neural map based algorithms (TASOM

and SURF). For GSVQ, we move along the RMSE vs CE

curves by changing the threshold governing the number of bits

that are encoded into the residual stream (residual encoding

is the operation that affects the performance of GSVQ the

most). Although not shown in the plot, with GSVQ one

may think of not sending the residual encoding stream, so

as to reach higher compression efficiencies. However, due

to the use of a precomputed and fixed dictionary, this leads

to a very high RMSE and is not a viable option. SURF

offers very good performance both in terms of RMSE and

CE, thus clearly outperforming the other algorithms. We also

emphasize the substantial gap in both RMSE and CE that

SURF achieves with respect to TASOM. The reasons for

this are: i) SURF dictionaries more effectively represent new

patterns and artifacts, ii) SURF works in the signal feature

space, where the size of codewords is f < m elements and

iii) dictionary updates are selectively implemented only for

those codewords that no longer meet the error tolerance εf .

For SURF, we also look at the size of dictionaries as a

function of CE. In Fig. 7, we plot the total size of dic-

tionaries D1, D2 and D3 and we see that it never exceeds

17 kbytes. For this reason, the approach is deemed amenable

to implementation on wearables. We also note that the size at

first (small CE) increases up to a maximum and then starts

decreasing for higher CE. This is because when the error

tolerance εf is very small, the compressor often sends the full

feature vector as none of the current codewords will match

the new segment. Also, as a new pattern is detected and the

corresponding feature vector is added to dictionary D2, this

codeword will be put into use (moving it to D1 and D3)

with small probability, as further “nearly exact” (εf → 0)

matches are difficult to occur for it. On the other hand, as εf
increases, more codewords will be added to the dictionary and

they will be used to encode multiple patterns each. However,

as εf keeps increasing beyond a certain threshold, because of

the relaxed accuracy requirement, a smaller codeword set will

suffice to represent the input signal space and the dictionary

size will correspondingly decrease. Again, f = 100 was found

to be a good choice, requiring less than 10kbytes of memory,

while resulting in very high CEs. For this reason, f = 100 is

used for SURF in the following graphs. Two further graphs,

Figs. 8 and 9, quantify the impact of the maximum number

of codewords in the dictionaries, Lmax, which corresponds to

the number of neurons in the adopted GNG neural networks.

The error tolerance εf is varied as an independent parameter

IEEE ACCESS 13

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100

R
M

S
E

Compression Efficiency (CE)

SURF (Lmax = 7)
SURF (Lmax = 10)
SURF (Lmax = 20)
SURF (Lmax = 30)

Fig. 8: SURF – RMSE vs compression efficiency.

0

2

4

6

8

10

12

14

0 20 40 60 80 100

D
ic

ti
o
n
ar

y
S

iz
e

[k
b
y
te

]

Compression Efficiency

SURF (Lmax = 7)
SURF (Lmax = 10)
SURF (Lmax = 20)
SURF (Lmax = 30)

Fig. 9: SURF – Dictionary size vs compression efficiency.

in both plots. As expected, Fig. 8 shows that a higher Lmax

leads to a higher accuracy, i.e., the current dictionary more

accurately represents the input signal. Nevertheless, we see

that the accuracy increase is not very large, whereas there is a

substantial difference in the overall memory space that is taken

by the dictionaries as Lmax increases. A number of neurons

per dictionary between 15 and 20 appears to be a good choice,

as further increasing Lmax from 20 to 30 only leads to minor

fidelity improvements (RMSE). Once Lmax is fixed, the error

tolerance can be used to tune the RMSE as desired.

In Fig. 10, we show the RMSE and the energy drained

for compression (processing) at the transmitter, expressed in

Joule per bit of the original ECG sequence. These tradeoff

curves are obtained by varying the compression efficiency of

each algorithm from the minimum to the maximum achievable

(which is scheme specific, see Fig. 6). The RMSE increases

with an increasing compression efficiency, whereas the com-

pression energy depends weakly on CE. As expected, BSBL

has the smallest energy consumption. This good performance

is due to its lightweight compression algorithm, which just

multiplies the input signal by sparse binary matrices. LTC is

the second best, whereas SOMP, GSVQ and TASOM perform

very close to one another and have the worst energy con-

sumption for compression, although SURF consumes a slightly

smaller amount of energy than them. We underline that the

energy consumption of SURF, TASOM, SOMP and GSVQ is

dominated by the preprocessing chain of Fig. 3 (as we quantify

below through Tables I and II). In Fig. 10, we also show the

performance of SURF by removing the contribution of this

pre-processing chain (filtering, peak detection and segment

extraction): the corresponding curve is referred to in the plot

as “SURF NoPre”. Note that filtering is always performed

to remove measurement artifacts and peak detection is also

very often utilized to extract relevant signal features. Given

this, the energy consumption associated with the required

pre-processing functions may not be a problem, especially if

these functions are to be executed anyway.

In Fig. 11, we show the RMSE as a function of the total

energy consumption, which is obtained adding up the energy

required for compression to that for the subsequent transmis-

0

5

10

15

20

10−10 10−9 10−8

R
M

S
E

Energy Consumption for Compression [Joule/bit]

increasing

CE

DCT
DWT

GSVQ
BSBLS
SOMP

LTC
TASOM

SURF NoPre
SURF

Fig. 10: RMSE vs compression energy obtained varying CE

as the independent parameter.

sion of the compressed bitstream, as detailed in Section VII.

This total energy is then normalized with respect to the number

of bits in the original ECG signal. From this plot, we see that

the total energy consumption is dominated by the transmission

energy, which depends on the compression efficiency. In this

respect, the best algorithms are LTC and SURF and the

algorithm of choice depends on the target RMSE that, in turn,

directly descends from the selected CE. As discussed above,

an adaptive algorithm may be a good option, where for each

value of CE the scheme that provides the smallest RMSE is

used. In Fig. 11, the energy consumption when no compression

is applied is also shown for comparison. We see that signal

compression, and the subsequent reduction in size of the data

to be transmitted, allows a considerable decrease in the total

energy consumption. When the energy reduction is one order

of magnitude, LTC and SURF both provide RMSEs smaller

than 2%. The performance of SURF is particularly striking

as it allows saving up to two order of magnitude in terms of

energy consumption while still keeping the RMSE around 6%.

Also, note that SURF’s actual RMSE is automatically adjusted

at runtime, by allowing slightly less accurate representations,

and thus much higher compression, when no critical patterns

IEEE ACCESS 14

0

5

10

15

20

25

10−8 10−7

R
M

S
E

Total Energy Consumption [Joule/bit]

no-compression
DCT
DWT

GSVQ
BSBLS
SOMP

LTC
TASOM

SURF

Fig. 11: RMSE vs total energy consumption.

occur.

A breakdown of the complexity and energy consumption

figures for the considered algorithms is provided in Tables I

and II. These metrics were obtained for the PhysioNet ECG

signals and represent the average complexity (expressed in

terms of number of operations) and energy consumption

(Joules) for the compression and transmission of an ECG

segment. From Table II, we see that SURF has a lower energy

consumption with respect to TASOM for compression, trans-

mission and in total. We also see that the peak detection block

of TASOM and SURF accounts for 91% of the per-segment

energy drainage. The same fact applies to the other segment-

based approaches (SOMP, GSVQ).

The plots in Fig. 12 show original and reconstructed ECG

temporal signals using LTC, TASOM and SURF, in the

presence of anomalous ECG segments (toward the middle of

the plots). Remarkably, although all algorithms have the same

average RMSE, LTC heavily affects the ECG morphology.

TASOM does a better job, but its dictionary is unable to

effectively represent the new (anomalous) patterns. SURF

provides the best results as it preserves the signal morphology,

while achieving the highest CE, i.e., up to CE = 53.

B. Wearable ECG Signals

We now present some results for ECG signals that we

acquired from a Zephyr BioHarness 3 wearable device [36].

To this end, we collected ECG traces from eleven healthy

individuals, which were continuously recorded during working

hours, i.e., from 8am to 6pm. These were sampled at a rate

of 25 samples/s with each sample taking 12 bits.
The RMSE vs CE tradeoff for these signals is shown

in Fig. 13 for the best performing compression algorithms.

The results are similar to those of Fig. 6 with the main

difference that in this case the ECG signals are prone to

artifacts. Due to the artifacts and to the highly non-stationary

behavior of the new traces, the resulting RMSE is higher and

the CE performance is degraded for all schemes. DWT and

LTC are good choices at low up to intermediate compression

efficiencies, whereas SURF shows its superior performance

at very high CEs, and especially its ability to gracefully

adapt to artifact-prone and non-stationary signals. Although its

maximum compression efficiency is affected, being lowered

from 96 to 50, the RMSE remains within 6% and is much

smaller than that achieved by all other schemes. SURF, with

artifact prone ECG signals, allows for typical compression

efficiencies in the range CE ∈ [40, 50], which means that

the data rate of 3 kbit/s that would be required to send the

uncompressed ECG trace is lowered to 60 bit/s and 75 bit/s for

CE = 40 and CE = 50, respectively. The energy consumption

figures, although rescaled, have a very similar behavior as

those obtained with the PhysioNet MIT-BIH traces and shown

in Figs. 10 and 11. They are thus not shown in the interest of

space.

In Figs. 14 and 15, we respectively show how the RMSE

and CE evolve with time for LTC, TASOM and SURF, where

these metrics are shown for each new ECG segment. For the

RMSE (Fig. 14), we see that both TASOM and SURF provide

excellent approximation accuracy. However, when artifacts

occur, at around times 1100 and 2500 (at the end of the

plot) we see that TASOM struggles to keep the RMSE low.

SURF instead still provides satisfactory RMSE performance

thanks to its adaptive mechanism by which feature vectors are

transmitted in place of dictionary indices. From Fig. 15, we see

that at times SURF’s compression efficiency is reduced. This

is either due to dictionary updates, which, with the considered

SURF parameters, occur every λ = 200 time steps (ECG

segments) or to artifacts, which in this figure are seen again

around ECG segments 1100 or 1500 (the same portion of ECG

signal is used for the last two figures).

In Fig. 16, we analyze the training behavior (RMSE versus

time) for dictionary D3, which is continuously updated at the

transmitter. Note that the current dictionary D1 is replaced

with D3 when the distance among their codewords exceeds

a given threshold. So, the evolution of D3, although at a

coarser time scale, also represents that of D1. To obtain

this plot, we ran the following experiment: we picked a first

subject and we trained D3 with their ECG signal for the first

55 minutes, at which point, the input signal was swapped

with that of a second subject. Two curves are shown in the

figure, using Lmax = 10 and Lmax = 30 and keeping all

the remaining parameters as specified at the beginning of

the section. At time zero, the dictionary is initialized using

random ECG segments from the first subject, whereas its

subsequent training follows the GNG-based algorithms of

Section VI. A few observations are in order. As expected,

when the training starts the error is higher (the RMSE is

higher than 4% for the first subject for Lmax = 10) but it

decreases with time and converges to the steady-state error

within 20 minutes. After 55 minutes, the signal is swapped

with that of another subject and this may for example occur

when the wireless ECG monitor is handled over to another

patient. At this point, we observe a peak in the RMSE,

which suddenly increases from 2.8% to 4.1%. However, D3 is

retrained and in about 20 more minutes converges to the new

steady-state RMSE for the second subject. This shows that

SURF gracefully adapts to new wearers, progressively tuning

its dictionaries to their ECG patterns. From this graph, we

also see that the RMSE depends on the maximum number

IEEE ACCESS 15

TABLE I: Energy breakdown [no. operations] and consumption [µJ] for TASOM. RMSE = 3.6% and CE = 20.92.

Pass band Peak Segment Pattern Codebook

filtering detection extractor matching manager Total

Additions 5420 68136 592 2885 7103 84136

Multiplications 5032 67362 298 2747 4260 79699

Divisions 387.13 775.27 3 0 29 1193.4

Comparisons 0 580.7 0 193.14 22.51 796.35

Compression energy [µJ] 0.52 4.82 0.03 0.19 0.39 5.95

Transmission energy [µJ] – – – – – 75.3

Total energy [µJ] 81.25

TABLE II: Energy breakdown [no. operations] and consumption [µJ] for SURF. RMSE = 3.6% and CE = 76.6.

Pass band Peak Segment Pattern Codebook

filtering detection extractor matching manager Total

Additions 5413.4 68055 2497 1366.5 1204.1 78536

Multiplications 5027 67281 1498 1380.31 610.69 75797

Divisions 386.65 773.35 2 0 0 1162

Comparisons 0 580.01 0 11.45 116.64 708.1

Compression energy [µJ] 0.52 4.82 0.13 0.09 0.06 5.62

Transmission energy [µJ] – – – – – 20.6

Total energy [µJ] 26.12

400

600

800

1000

1200

1400

0 500 1000 1500 2000

A
m

p
li

tu
d
e

Samples

Original
LTC reconstructed
Original TASOM

(a) LTC: CE = 22 and RMSE = 2%.

400

600

800

1000

1200

1400

0 500 1000 1500 2000

A
m

p
li

tu
d
e

Samples

Original
LTC reconstructed

(b) LTC: CE = 29 and RMSE = 3%.

400

600

800

1000

1200

1400

0 500 1000 1500 2000

A
m

p
li

tu
d
e

Samples

Original
TASOM reconstructed

(c) TASOM: CE = 34 and RMSE = 2%.

400

600

800

1000

1200

1400

0 500 1000 1500 2000

A
m

p
li

tu
d
e

Samples

Original
TASOM reconstructed

(d) TASOM: CE = 49 and RMSE = 3%.

400

600

800

1000

1200

1400

0 500 1000 1500 2000

A
m

p
li

tu
d
e

Samples

Original
SURF reconstructed

(e) SURF: CE = 43 and RMSE = 2%.

400

600

800

1000

1200

1400

0 500 1000 1500 2000

A
m

p
li

tu
d
e

Samples [ECG segments]

Original
SURF reconstructed

(f) SURF: CE = 53 and RMSE = 3%.

Fig. 12: Original and reconstructed signal in the presence of artifacts for LTC, TASOM and SURF.

IEEE ACCESS 16

0

5

10

15

20

0 10 20 30 40 50 60

R
M

S
E

Compression Efficiency (CE)

DWT
SOMP

LTC
TASOM

SURF

Fig. 13: RMSE vs CE for Bioharness ECG signals.

0

1

2

3

4

5

6

7

400 600 800 1000 1200 1400

R
M

S
E

time [ECG segments]

SURF
TASOM

LTC

Fig. 14: RMSE as a function of time. CE = 25 for all

schemes, RMSE(LTC) = 5%, RMSE(TASOM) = 1.58%

and RMSE(SURF) = 1.29%.

of codewords in the dictionary, Lmax: an increasing Lmax

leads to higher accuracies. As a last remark, we recall that

the RMSE in Fig. 16 corresponds to the representation error

of SURF dictionaries, but the actual RMSE of the full SURF

algorithm is always within the preset error tolerance. In fact,

according to the algorithms of Section VI, when the RMSE

is higher than a preset threshold the dictionary is not used,

but the feature vector associated with the current segment is

sent as the compressed representation. In other words, SURF

automatically switches between dictionary-based compression

and feature-based (e.g., DCT) compression, meeting the preset

representation accuracy at all times.

Fig. 17 shows the energy consumption associated with radio

transmission and processing, identifying the region where

compression provides energy savings and it is therefore rec-

ommended. We obtained this plot as follows. Let B and B̂
respectively be the number of bits to send over the channel

when no compression is applied and those to be sent when

the signal is compressed. With Ncc(B, εf) we indicate the

number of clock cycles that are needed to run the compression

algorithm, which depends on the number bits B in the original

signal and on the compression error εf (which dictates a

0

20

40

60

80

100

400 600 800 1000 1200 1400

C
o

m
p

re
ss

io
n

E
ffi

ci
en

cy

time [ECG segments]

SURF
TASOM

LTC

Fig. 15: CE as a function of time. RMSE = 2% for

all schemes, CE(LTC) = 14, CE(TASOM) = 42 and

CE(SURF) = 50.

2

2.5

3

3.5

4

4.5

0 20 40 60 80 100 120

R
M

S
E

Time [minutes]

Lmax = 10
Lmax = 30

Fig. 16: Average normalized RMSE versus training time for

the updated dictionary D3: the dictionary is trained on a first

subject for the first 55 minutes. After that, the ECG trace

of a different subject is used as the input time series. The

dictionary at first produces high errors, but then quickly adapts

and converges to the steady-state RMSE for the second subject.

certain compression factor). Compression is convenient when

the following inequality holds:

EccNcc(B, εf) + E0
txB̂ < E0

txB , (21)

which means that the energy for compression added to that for

transmission of the compressed sequence (left hand side) must

be smaller than the energy that would be required to send the

uncompressed signal (right hand side). Solving this inequality

for E0
tx, we find the minimum E0

tx that allows compression to

be energy efficient, that is:

E0,min
tx =

EccNcc(B, εf)

B − B̂
. (22)

The lines plotted in Fig. 17 correspond to E0,min
tx computed for

several values of εf , which in turn imply different compression

efficiencies (CE in the figure). The region in this plot where

compression is advantageous (energy efficient region) is that

IEEE ACCESS 17

10−12

10−11

10−10

10−9

10−8

10−7

10−12 10−11 10−10 10−9 10−8

E
n
er

g
y

p
er

tr
an

sm
it

te
d

b
it

,
E

0 t
x

[J
]

Energy per clock cycle, Ecc [J]

RMSE = 2.14, CE = 6.8
RMSE = 4.25, CE = 38.6
RMSE = 6.15, CE = 80.2

CC2420
CC2541LP

CC2541

M4-40LP

M4-90LP

M4-180ULL

energy efficient
region

Fig. 17: Efficiency regions for SURF compression with dif-

ferent radios and MCUs. Radios: CC2420 (250 kbit/s, power

0 dBm), CC2541 (2 Mbit/s, at maximum power 0 dBm),

CC2541LP (low rate 500 kbit/s and power −20 dBm). MCUs:

Cortex-M4 versions 40LP, 90LP, 180ULL.

for which E0
tx > E0,min

tx , which corresponds to the region

above the curves. As seen from the plot, the energy efficient

regions weakly depend on the compression parameters as

the number of clock cycles is almost constant for different

settings (changing εf), B is also constant and it depends on

the sampling rate of the ECG monitor, and the only variable

that changes is B̂. Most importantly, in the graph we have

also reported the energy consumption figures (E0
tx and Ecc)

of several radios and MCUs (each radio/MCU pair is indicated

by a filled dot in the figure). All of them fall within the efficient

region and, as expected, compression provides the highest gain

when the radio is energy hungry (CC2420) and the processor is

energy efficient (Cortex M4-40LP). Before applying the SURF

algorithm to any architecture, one should make sure that the

selected combination of radio and MCU operates within the

energy efficient region of Fig. 17.

IX. CONCLUSIONS

In this paper, we have presented SURF, an original subject-

specific and time-adaptive lossy compression algorithm for

wearable fitness monitors. This algorithm is based upon dictio-

naries that are learned and maintained at runtime through the

use of neural network maps. Our design utilizes unsupervised

learning to accomplish the following objectives: i) dictionaries

gracefully and effectively adapt to new subjects or their new

activities, ii) the size of these dictionaries is kept bounded (i.e.,

within 20 kbytes), making them amenable to implementation

in wireless monitors, iii) high compression efficiencies are

reached, allowing for reductions in the signal size from 50- to

96-fold, depending on the frequency of artifacts in the sampled

signal, iv) the original biometric time series are reconstructed

at the receiver with high accuracy, i.e., within a peak-to-peak

RMSE of 7% and often smaller than 3% and v) compression

allows saving energy at the transmitter, lowering the total

energy expenditure of almost two orders of magnitude. SURF

outperforms the compression approaches that were proposed

thus far. Although in this paper SURF has been designed

and tested with ECG signals, it can be applied to other

quasi-periodic signals as long as a reliable segment extraction

technique is provided.

ACKNOWLEDGMENT

The work of Dadive Zordan, Mohsen Hooshmand and

Michele Rossi was supported by Samsung Advanced Institute

of Technology (SAIT), Korea, as part of its SAMSUNG Global

Research Outreach (GRO) program and by the project IoT-

SURF (CPDA 151221), funded by the University of Padova.

The Work of Tommaso Melodia was supported by the US

National Science Foundation under grants no. CNS-1253309

and CNS-1618731.

REFERENCES

[1] P. Soh, G. Vandenbosch, M. Mercuri, and D.-P. Schreurs, “Wearable
Wireless Health Monitoring: Current Developments, Challenges, and
Future Trends,” IEEE Microwave Magazine, vol. 16, no. 4, pp. 55–70,
May 2015.

[2] M. Srivastava, T. Abdelzaher, and B. Szymanski, “Human-centric Sens-
ing,” Phylosophical Transactions of Royal Society, vol. 370, no. 1958,
pp. 176–197, Jan. 2012.

[3] S. Riazul Islam, D. Kwak, M. Humaun Kabir, M. Hossain, and K.-
S. Kwak, “The Internet of Things for Health Care: A Comprehensive
Survey,” IEEE Access, vol. 3, pp. 678–708, Jun. 2015.

[4] V. Vadori, E. Grisan, and M. Rossi, “Biomedical Signal Compression
with Time- and Subject-adaptive Dictionary for Wearable Devices,” in
IEEE International Workshop on Machine Learning for Signal Process-

ing (MLSP), Vietri sul Mare, Salerno, Italy, Sep. 2016.

[5] T. Kohonen, “The Self-Organizing Map,” Proceedings of the IEEE,
vol. 78, no. 9, pp. 1464–1480, Sep. 1990.

[6] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed.
Upper Saddle River, NJ, US: Prentice Hall, 1998.

[7] H. Shah-Hosseini and R. Safabakhsh, “TASOM: the time adaptive self-
organizing map,” in Proceedings of the International Conference on

Information Technology: Coding and Computing, Las Vegas, NV, US,
Mar. 2000, pp. 422–427.

[8] B. Fritzke, A Growing Neural Gas Network Learns Topologies. MIT
Press, 1995.

[9] C. C. Sun and S. C. Tai, “Beat-based ECG compression using gain-shape
vector quantization,” IEEE Transactions on Biomedical Engineering,
vol. 52, no. 11, pp. 1882–1888, Nov. 2005.

[10] T. Schoellhammer, B. Greenstein, M. W. E. Osterweil, and D. Es-
trin, “Lightweight temporal compression of microclimate datasets,” in
Proceedings of the IEEE International Conference on Local Computer

Networks (LCN), Tampa, FL, US, Nov. 2004.

[11] R. Shankara and S. M. Ivaturi, “ECG Data Compression Using Fourier
Descriptors,” IEEE Transactions on Biomedical Engineering, vol. 33,
no. 4, pp. 428–434, Apr. 1986.

[12] V. Allen and J. Belina, “ECG data compression using the discrete cosine
transform (DCT),” in Proceedings of Computers in Cardiology, Durham,
NC, US, Oct. 1992, pp. 687–690.

[13] D. Zordan, B. Martinez, I. Villajosana, and M. Rossi, “On the Perfor-
mance of Lossy Compression Schemes for Energy Constrained Sensor
Networking,” ACM Transactions on Sensor Networks, vol. 11, no. 1, pp.
15:1–15:34, Nov. 2014.

[14] B. A. Rajoub, “An Efficient Coding Algorithm for the Compression
of ECG Signals Using the Wavelet Transform,” IEEE Transactions on

Biomedical Engineering, vol. 49, no. 4, pp. 355–362, Apr. 2002.

[15] L. Polania, R. Carrillo, M. Blanco-Velasco, and K. Barner, “Compressed
sensing based method for ECG compression,” in Proceedings of the

IEEE International Conference on Acoustics, Speech and Signal Pro-

cessing (ICASSP), Prague, Czech Republic, May 2011, pp. 761–764.

[16] G. D. Poian, R. Bernardini, and R. Rinaldo, “Gaussian dictionary for
Compressive Sensing of the ECG signal,” in Proceedings of the IEEE

Workshop on Biometric Measurements and Systems for Security and

Medical Applications (BIOMS), Rome, Italy, Oct. 2014.

IEEE ACCESS 18

[17] M. Saeed and M. Villarroel and A.T. Reisner and G. Clifford and L.
Lehman and G.B. Moody and T. Heldt and T.H. Kyaw and B.E. Moody
and R.G. Mark, “Multiparameter Intelligent Monitoring in Intensive
Care II (MIMIC-II): a public-access intensive care unit database,”
Critical Care Medicine, vol. 39, no. 5, pp. 952–960, May 2011.

[18] J. Cox, H. Fozzard, F. M. Nolle, and G. Oliver, “AZTEC: A preprocess-
ing system for real-time ECG rhythm analysis,” IEEE Transactions on

Biomedical Engineering, vol. 37, no. 9, pp. 128–129, Apr. 1968.
[19] J. P. Abenstein and W. J. Tompkins, “A New Data-Reduction Algo-

rithm for Real-Time ECG Analysis,” IEEE Transactions on Biomedical

Engineering, vol. 29, no. 1, pp. 43–48, Jan. 1982.
[20] H. Lee and K. M. Buckley, “ECG data compression using cut and align

beats approach and 2-D transforms,” IEEE Transactions on Biomedical

Engineering, vol. 46, no. 5, pp. 556–564, May 1999.
[21] J. Cardenas-Barrera and J. Lorenzo-Ginori, “Mean-shape vector quan-

tizer for ECG signal compression,” IEEE Transactions on Biomedical

Engineering, vol. 46, no. 1, pp. 62–70, Jan. 1999.
[22] S.-G. Miaou and J.-H. Larn, “Adaptive vector quantisation for electro-

cardiogram signal compression using overlapped and linearly shifted
codevectors,” Medical and Biological Engineering and Computing,
vol. 38, no. 5, pp. 547–552, 2000.

[23] A. Chatterjee, A. Nait-Ali, and P. Siarry, “An input-delay neural-
network-based approach for piecewise ecg signal compression,” IEEE

transactions on biomedical engineering, vol. 52, no. 5, pp. 945–947,
2005.

[24] D. Del Testa and M. Rossi, “Lightweight Lossy Compression of Bio-
metric Patterns via Denoising Autoencoders,” IEEE Signal Processing

Letters, vol. 22, no. 12, pp. 2304–2308, Dec. 2015.
[25] Y. Linde, A. Buzo, and R. Gray, “An Algorithm for Vector Quantizer

Design,” IEEE Transactions on Communications, vol. 28, no. 1, pp.
84–95, Jan. 1980.

[26] M. Hooshmand, D. Zordan, D. Del Testa, E. Grisan, and M. Rossi,
“Boosting the Battery Life of Wearables for Health Monitoring through
the Compression of Biosignals,” IEEE Internet of Things Journal,
vol. PP, no. 99, pp. 1–16, Mar. 2017.

[27] A. Gersho and R. M. Gray, Vector quantization and signal compression.
Springer Science & Business Media, 2012, vol. 159.

[28] K.-S. Wu and J.-C. Lin, “Fast vq encoding by an efficient kick-out con-
dition,” Circuits and Systems for Video Technology, IEEE Transactions

on, vol. 10, no. 1, pp. 59–62, 2000.

[29] M. Elgendi, “Fast QRS Detection with an Optimized Knowledge-Based
Method: Evaluation on 11 Standard ECG Databases,” PLoS ONE, vol. 8,
no. 9, pp. 1–18, Sep. 2013.

[30] T. M. Martinetz, S. G. Berkovich, and K. J. Schulten, “Neural-gas
Network for Vector Quantization and Its Application to Time-series
Prediction,” IEEE Transactions on Neural Networks, vol. 4, no. 4, pp.
558–569, Jul. 1993.

[31] B. Fritzke, “Growing Cell Structures: A Self-Organizing Network for
Unsupervised and Supervised Learning,” Neural Networks, vol. 7, no. 9,
pp. 1441–1460, 1994.

[32] C. Karakus, A. C. Gurbuz, and B. Tavli, “Analysis of Energy Efficiency
of Compressive Sensing in Wireless Sensor Networks,” IEEE Sensors

Journal, vol. 13, no. 5, pp. 1999–2008, May 2013.

[33] M. Hooshmand, M. Rossi, D. Zordan, and M. Zorzi, “Covariogram-
based Compressive Sensing for Environmental Wireless Sensor Net-
works,” IEEE Sensors Journal, vol. 16, no. 6, pp. 1716–1729, Mar.
2016.

[34] ARM The Architecture for the Digital World, “ARM Cortex-M4
Processor,” 2015. [Online]. Available: http://www.arm.com/products/
processors/cortex-m/

[35] ARM R©, “Cortex-M4 Technical Reference Manual,” 2010. [Online].
Available: http://infocenter.arm.com/help/topic/com.arm.doc.ddi0439b/
DDI0439B cortex m4 r0p0 trm.pdf

[36] Zephyr Technology Corporation, “Bioharness 3 - Wireless Professional
Heart Rate Monitor and Physiological Monitor,” 2017. [Online].
Available: http://www.zephyranywhere.com/

[37] Texas Instruments, “CC2451: 2.4 GHz Low Energy and Proprietary
System-on-Chip,” 2015. [Online]. Available: http://www.ti.com/product/
cc2541

[38] “Specification of the Bluetooth System v4.2,” Bluetooth Core
Specification Standard, Dec. 2014. [Online]. Available: https://www.
bluetooth.com

[39] Y. Zigel, A. Cohen, and A. Katz, “ECG Signal Compression Using
Analysis by Synthesis Coding,” IEEE Transactions on Biomedical

Engineering, vol. 47, no. 10, pp. 1308–1316, Oct. 2000.

[40] Z. Zhang, T.-P. Jung, S. Makeig, and B. D. Rao, “Compressed Sensing
for Energy-Efficient Wireless Telemonitoring of Noninvasive Fetal ECG
Via Block Sparse Bayesian Learning,” IEEE Transactions on Biomedical

Engineering, vol. 60, no. 2, pp. 300–309, Feb. 2013.

