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Abstract—The nonlocal means (NLM) algorithm is one of the
best image denoising algorithms because of its superior capability
to retain the texture details of an image and is widely used
in remote sensing (RS) image preprocessing. However, the time
complexity of the algorithm is very high due to its nonlocality
when searching for similar pixels. As a result, the NLM algorithm
cannot satisfy the near real-time requirements of some specific
applications. To resolve this issue, a parallel NLM algorithm
based on Intel Xeon Phi hardware with Intel’s Many Integrated
Cores (MIC) architecture was designed and implemented in
this study. The parallel algorithm achieved satisfactory speedup,
but the speedup obtained showed a step-like distribution for
different image sizes. This result was not expected based on the
theoretical analysis, which predicted that the speedup should be
independent of input dataset size. To address this problem, the
parallel algorithm was further optimized by adding pretreatment
approaches and cutting down the number of nested loops in the
MIC. Finally, experiments using the standard and optimized ver-
sions were carried out using RS images of different sizes. Several
conclusions could be drawn from the experimental results: (1)
the standard parallel algorithm can obtain better speedup with
only one MIC card; (2) the optimized parallel algorithm can
completely eliminate the step distribution of the speedup and
can also accelerate RS image processing significantly.

Index Terms—Parallel Computing, MIC, Remote Sensing,
Image Processing, OpenMP

I. INTRODUCTION

Noise is inevitably produced during image generation and

transmission and influences image processing quality, not only

compromising the visual effect of the image, but also influenc-

ing our ability to recognize and understand information in the

image and increasing image transmission costs [1]. As a result,

image denoising has become a key technique and is coming to

play a more and more important role in image processing [2].
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Image denoising is an important step for remote sensing (RS)

image preprocessing in related applications and has become

a research branch in the field of RS image enhancement [3],

[4], [5] [6], [7], [8].

Many studies have been carried out on image denoising, and

many image denoising methods have been proposed in the last

several years [9] [10]. However, most of those methods are not

very satisfactory because much texture detail is often lost in

the denoising process. The nonlocal means (NLM) algorithm,

which was proposed in 2005, can prevent loss of detail to a

certain degree [11]. The NLM algorithm can search for pixels

that are similar to the target pixel in the entire image based

on the self-similarity principle. As a result, it can make full

use of the redundant information that exists everywhere in

the image. During the search process, the weights to measure

the similarity between pixels are calculated based on the

differences between the gray-value vectors of similar pixel

slices [12]. A pixel slice is a slice of the image of interest

that is centered on the pixel that needs to be measured.

Among classical image denoising algorithms, the NLM

algorithm attracted much attention when it was first proposed

due to its capability to retain image details [13]. It is currently

one of the most widely studied methods in the field of image

denoising. Although the NLM algorithm has good denoising

effect, it has high computational complexity, meaning that it

is numerically expensive to execute [14].

To resolve this issue, many researchers have tried to im-

prove the algorithm to enhance its performance. For instance,

Vignesh et al. proposed a new fast NLM filtering algorithm

in which the search process can be terminated early with

a certain probability [15]. In this algorithm, a probabilistic

statistical method is used to select similar pixels while filtering

out dissimilar ones. Mahmoudi et al. proposed an improved

algorithm using a filter to eliminate irrelevant neighborhoods

during the weighted averaging process [16]. Because the filter

is based on the average gray-value gradient, the improved

algorithm can enhance performance effectively. Huang et al.

used a graphic processing unit (GPU) to accelerate NLM

algorithm performance and achieved speedups as high as 45X

[17]. Hu et al. used the NLM algorithm for 3D ultrasonic

image denoising and used GPU technology to accelerate real-

time performance in this specific area [18]. Most recently,

Zhu et al. designed and implemented OpenMP-based and

OpenCL-based parallel NLM algorithms that can run on dif-

ferent platforms [19]. They focused mainly on a performance

comparison of different versions on the CPU, GPU, and Intel
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Xeon Phi platforms.

In existing studies aiming to improve the performance of

denoising applications, some researchers have focused on

improving the algorithm itself, whereas others have taken

advantage of emerging computing technologies. In general,

the acceleration effect is usually better in the latter case, and

the acceleration process is simpler and quicker than changing

the algorithm. However, the GPU acceleration approach also

has some flaws. The GPU programming mode is usually

somewhat complex, and therefore developers must understand

this new hardware architecture and programming environment

[20]. In November 2012, Intel officially released the Xeon

Phi coprocessor, which is based on the Intel Many Integrated

Cores (MIC) architecture [21], [22]. The process of developing

parallel algorithms is easier in this environment because MIC

uses the X86 instruction set, with some new extension sets

for parallelism purposes [23], [24]. Compared to the GPU

platform, the speedup obtained on MIC may be less than

the GPU can achieve. However, the programming style on

MIC is more flexible, and it is a very suitable platform for

developing parallel image processing algorithms such as the

NLM algorithm.

This paper is organized as follows. Section 2 gives a brief

introduction to various aspects of developing the parallel

NLM algorithm, including the principle of the serial NLM

algorithm and an introduction to Intel Xeon Phi. Section 3

concentrates mainly on the design and implementation of the

parallel NLM algorithm. Because the speedups obtained did

not agree with those expected from theoretical analysis, the

section also describes the optimization measures that were

taken to overcome these problems. Section 4 describes the

experiments with the standard and optimized versions that

were carried out with different sizes of input RS images.

Finally, Section 5 discusses the results and draws conclusions.

II. BRIEF INTRODUCTION TO THE BACKGROUND

A. Principle of the Serial NLM Algorithm

Buades et al. [11] presented the NLM algorithm in 2005.

Compared to other denoising algorithms, the NLM algorithm

shows superior performance in maintaining the image mi-

crostructure. The principle of serial NLM is illustrated in

(Fig.1).

Assume that the target pixel is i, and that jn are its

neighborhoods. A pixel slice is a slice of the image of interest

that is centered on the pixel that needs to be measured. For

instance, Ni is the image slice with center pixel i, and u(Ni)
is used to represent the gray-value vector of the image slice of

Ni. In this way, the similarity between i and j can be measured

and calculated based on the differences between the gray-value

vectors of similar pixel slices, i.e., u(Ni) and u(Nj). In the

process, the gray-value vector of the image slice provides a

measurement of the similarity between pixels i and j. The

more similar u(Ni) and u(Nj) are, are, the greater is the

degree of similarity between i and j.

Nj1, Nj2, Nj3 and Ni are the image slices (the white

rectangles in Fig. 1) for pixels of j1, j2, j3 and i respectively.

Obviously, Nj1 and Nj2 have similar structural characteristics

Fig. 1. Principle of the NLM algorithm.

to the image slice of i, here, Ni; whereas the image slice for

j3, Nj3, is different from Ni. Hence, the given weights for

j1 and j2 will be much higher than for j3. According to this

principle, the NLM noise removal algorithm can be simply

expressed as Equation (1).

NLu(p) =
1

C(p)

∫
F (d2(B(p, f), B(q, f)))u(q)dq (1)

Where p is the target pixel, q is its neighbor, and their image

slices and corresponding gray-value vectors are Np, Nq , and

u(p), u(q), respectively. F is a decreasing function, C(p) is a

normalization factor, and d2(B(p, f), B(q, f)) represents the

square Euclidean distance between Np and Nq . The formula

to calculate d2(B(p, f), B(q, f)) can be expressed as:

d2(B(p, f), B(q, f)) =
1

(2f + 1)2

∑
j∈B(0,f)

(u(p+j)−u(q+j))2

(2)

Note here that the image slice is represented as a circle

and that the radius of the image slice can be changed. In

Equation (2), B(p, f) denotes the image slice for pixel p, and

its corresponding radius is f .

B. Intel Xeon Phi Coprocessor

With increasing demands for computing power, computer

hardware manufacturers began to integrate more and more

cores into one chip [25]. In a many-core processor, the

computation capability of each individual core is far less than

that of one normal CPU, but because the processor has more

cores, it is more suitable for concurrent computing.

The Intel Xeon Phi is designed for parallel computing and

has the following features [26]: (1) it is a standard PCI-E

interface board; (2) it supports the X86-64 instruction set

and also has the extended 512-bit quantization instructions.
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As a result, it is compatible with existing code running on a

normal x86 CPU to a very great extent and has optimization

methods and procedures similar to a traditional CPU; (3) it

is equipped with an independent memory, power supply, and

other features; (4) it has more than 50 cores. Every core

offers four-way simultaneous multithreading (SMT) and 512-

bit-wide SIMD vectors, which correspond to eight double-

precision (DP) or sixteen single-precision (SP) floating-point

numbers. Note that, compared with hyper threads, SMT has

better performance because it has its own hardware thread unit.

Hence, the Intel Xeon Phi coprocessor can provide powerful

hardware support for high-concurrency scenarios; (5) it has

a peak computing capability greater than 1 TFlops of DP;

and (6) the card has a Linux-based chip operating system that

supports Linux instructions and virtual Ethernet equipment.

In this way, the MIC card can be regarded as one of the

computing nodes in the network because it has its own IP

address.

The MIC has extremely flexible programming modes. In

programming design, the MIC card can be seen as a copro-

cessor, but also can be regarded as a separate computing node.

In this way, its parallel application mode can be divided into

three types [27]: (1) the CPU is the host, the MIC is the

computing end; (2) the MIC card is the host, the CPU is the

computing end; and (3) the CPU and the MIC are equivalent

in the offload mode. The most commonly used mode is the

first one.

Furthermore, programming on the MIC platform offers

several more optimization approaches. For example, perfor-

mance can be further optimized by selecting the right parallel

programming mode, or by selecting the compatible number

of threads, or by selecting suitable running devices, i.e., CPU

or MIC, pointing to different pieces of code. The CPU and

the MIC can use an asynchronous mechanism either between

threads or within one thread. In this way, computing resources

can be fully used. In particular, maintenance costs can be

greatly reduced, e.g., the code running in a normal CPU can

be run on an MIC platform without much modification.

III. PARALLEL NLM ALGORITHM DESIGN AND

IMPLEMENTATION

The sequential NLM algorithm has good denoising per-

formance, but very high time complexity. Assuming that the

input image size (height and width) is N x N , the size of

the matching window is W x W , and the size of the search

window is K x K, then the time complexity of the algorithm

is O(N2K2W 2). Such a high time complexity has made

it difficult and challenging to apply the algorithm directly,

especially in time-critical applications. According to the above

analysis, parallelizing this algorithm on an MIC platform

would be a wise choice. On the one hand, this algorithm is

suitable to be parallelized; on the other hand, using an MIC

will be easier and faster than using other coprocessors.

The process of designing and implementing the parallel

algorithm involves the following steps: (1) find the hotspot

of the serial algorithm using a performance analysis tool such

as Intel Vtune Amplifier, and (2) plan suitable parallelization

…
For y=0 To Height        // Traversing each column

…
For x=0 To Width   // Traversing each row

// Calculate the searching window
// Calculate the weight
// Normalized the weights
// Assignment
...

End For
End For
// Subsequent processing
...

Fig. 2. Pseudocode of the NLM algorithm.

strategies that match the algorithm principle with the MIC

hardware characteristics.

A. Sequential NLM Algorithm Hotspot Detection and Analysis

The NLM algorithm is a typical spatial-domain denoising

algorithm. According to Equation (1), the NLM algorithm can

be expressed using the pseudocode shown in Fig.2 [28].

During processing, every image pixel goes through the same

sequence of operations: (1) determining the search box; (2)

calculating the weight; (3) normalizing the weight; and (4)

assigning the value. The most time-consuming part of the

program is the 2D loop. The performance analysis tool, Intel

VTune Amplifier, determined that this loop takes about 99% of

the total time of the NLM algorithm. Because the operations

on each pixel in the loop portion of the NLM algorithm are

independent and no data dependency exists before or after the

loop, the parallelization process is straightforward.

B. Parallel NLM Algorithm Design and Implementation

The number of cores in CPUs currently available on the

market is 4 to 12, but the MIC coprocessor has approximately

60 cores, and each core provides four-way SMT. Hundreds of

threads could be used for parallelization to help improve the

efficiency of certain specific algorithms. However, parallel pro-

gram development is closely related both to the parallelization

strategy and the development tools used. Generally speaking,

the first step should be to design and develop a parallel

algorithm on the multicore platform and then to transplant

the code to the MIC platform in a special “offload” mode. To

make the results comparable, the elapsed time durations and

speedups obtained with MIC in the rest of this paper were all

measured under this programming mode.

How to allocate these many cores reasonably and use them

efficiently is of great significance for the success of a parallel

NLM algorithm. Based on the principle of the NLM algorithm

and the characteristics of the MIC, the parallelization approach

shown in (Fig.3) was proposed.

There are many cores in the MIC platform, and these cores

can provide corresponding threads. For instance, the maximum

number of threads offered by the MIC platform used in this

research is 240. The computing operations for each pixel

are divided into many threads and are then mapped to the

corresponding cores. If the platform can provide sufficient
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Fig. 3. Parallel NLM algorithm design.
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Fig. 4. Flowchart of parallel program execution.

computing power, optimal performance is obtained when the

number of threads is equal to the number of pixels. Under

this circumstance, each thread is responsible for one pixel. As

shown in Fig.3, the loop processing time can be reduced to

the time to process a single pixel. In fact, the platform used

cannot meet this requirement. In other words, several pixels

must be mapped into one thread. The parallel NLM algorithm

therefore starts its execution on a CPU. The computation is

then sent to the MIC to calculate the main loop. The threads

are mapped to the MIC cores in batches. Each core starts one

to four threads simultaneously. When the parallel part finishes,

control is returned to the CPU, which outputs the results and

(a) With OpenMP (b) With MIC

…
// Codes for other operations
...
// Start OpenMP command lines
Omp_set_num_threads (NUM_THREADS);
#pragma omp parallel for …
For y=0 To Height       
…

For x=0 To Width
// Calculate the searching window
// Calculate the weight
// Normalized the weights
// Assignment
...

End For
End For

// Subsequent processing

// Codes for other operations
…
__attribute__((target(mic)))void pixdiff();
__attribute__((target(mic)))float exp();
…
// Start MIC command lines
#pragma offload target(mic:0)\
inout(ptSum(length(ap))alloc_if(1)free(1)\
...
inout(ptO(length(ap))alloc_if(1)free(1)
…
// Auto-vectorization definitions
int A[n] __attribute__((aligned(64)));
...
// Start OpenMP command lines
Omp_set_num_threads (NUM_THREADS);
#pragma omp parallel for …
For y=0 To Height       
…

For x=0 To Width
// Calculate the searching window
// Calculate the weight
// Normalized the weights
// Assignment
...

End For
End For
// Subsequent processing

Fig. 5. Pseudocode of parallel NLM algorithm for multicore/MIC platform.

terminates the program (Fig.4).

To develop a parallel algorithm on an MIC platform, the

best practice is first to implement the parallel program using

OpenMP, which can run on a multicore platform. The OpenMP

program implementation should consider the hotspots of the

serial NLM algorithm. Subsequently, the input and output vari-

ables should be determined, and the corresponding offload

statement should be inserted accordingly.

By analyzing the hotspots of the algorithm, it became

apparent that there is no data dependency in the two loop

levels, i.e., the x and y loops in Fig.2. This means that

the algorithm can be parallelized as the top-level loop, the

bottom-level loop, and both loops. According to established

parallelization principles [29], it is strongly suggested to use

the coarse-grained approach on most occasions, i.e., it is

better to perform parallelization starting from the upper layer.

The coarse-grained programming approach reduces the time

required for thread creation, destruction, and scheduling. In

this study, the parallelized version was created using OpenMP

as the development tool. The pseudocode is shown in Fig.5 in

the red box.

This version of the parallel NLM algorithm can run on a

multicore computing platform directly. In Fig.5 (a), the state-

ment “omp set num threads (NUM THREADS)” indicates

the number of threads that will be set. In addition, some other

keywords like offload, in, inout, alloc if and free if are

used to transplant the codes to the MIC computing platform

(Fig.5 (b)).

In the blue box in Fig.5 (b), the keyword offload divides

the computing devices into the host end and the device end and

it clearly defines the computing scopes for each end. Within

the scope of offload, the code is executed on the host end;

once outside the scope, the code is executed on the device

end. According to the definition of the MIC parallelization

mode, the host can be either the CPU or the MIC. In this

research, the CPU was the host end by default, and the MIC
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was the device end. In addition, certain other keywords are

needed to control the corresponding memory spaces in both

host and device ends for communication and data transfer.

These keywords are in and inout. After memory allocation,

the data on the host end are copied into the device end. At

this point, the code is running in truly parallel computation

mode. After the computation on the MIC is done, there are two

possibilities for dealing with the computing results when they

leave the device end. One is to copy the results and move them

to the host end; the other is to do nothing. The inout command

is responsible for the first situation and the in command for the

second. In this algorithm implementation, four memory spaces

must be defined: ptI, ptLu, ptO and ptSum. The first two use

the in keyword, whereas the other two need inout to control

the memory copy operation. In addition, the memory space

in the device end must be turned on and off. The keywords

alloc if and free if are responsible for these actions. A test

expression should be used as the input parameter for these

operators. In this study, the expression was set to true, which

means the program needs to allocate some memory when it

enters the device end and free up the space used when leaving.

In summary, the main body of the parallel program first ex-

ecutes on the CPU, but transfers the computations to the MIC

card when the program reaches the first “offload” statement.

At the same time, certain variables, such as pointers needed

by the MIC, are constructed with the help of keywords like in

and out. The standard parallel NLM algorithm is illustrated

by the pseudocode shown in Fig.5 (b).

Note that the functions and variables that execute on

the MIC end must first be modified and labeled with

attribute (target(MIC)) as indicated by the green box

in Fig.5 (b)). Only in this way will the invocation and exe-

cution be correct. For example, the function pixDist should

be modified to attribute ((MIC(target)))pixDist(...) if

invoked by the MIC end. In addition, to make full use of the

MIC’s computation potential, auto-vectorization is used in this

standard parallel version (as shown by the purple box in Fig.5

(b)). With these definitions, the vectorization operation can be

activated using Intel compiler options.

C. Performance Analysis with the Standard Parallel Version

Speedup is the most common used indicator to evaluate a

parallel algorithm’s performance. Speedup is the ratio of the

elapsed time of a particular task running on a single-processor

system to that on a parallel system, which can be calculated

by Equation (3) [30]:

Sp =
T1

Tp

(3)

Where Sp is the speedup achieved, T1 is the elapsed time

for a single processor to process the task, and Tp is the running

time of the parallel system, e.g., on a multicore processor, to

process the same computing task.

Using Equation (3), one can deduce the estimated speedup

that the parallel NLM algorithm can achieve. As is well

known, the time complexity of the serial NLM algorithm is

O(N2K2W 2). Because the values of K and W are fixed,
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(b) On MIC platform 
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Fig. 6. Speedup changes with number of threads.

the elapsed time increases with the number of pixels, i.e., the

product of the height and width (N ) of the image. If there

are sufficient cores (assuming n cores) to process the entire

image at the same time, the expected speedup is equal to nc

and can be expressed by Equation (4). However, this is an

ideal condition. In real applications, the expected speedup is

far smaller than this. However, it has been demonstrated that

the speedup obtained is not influenced by image size, i.e., the

speedup achieved with different image sizes remains the same:

lim
nc→N2

(Sp) =
O(N2K2W 2)

O(N
2

nc
K2W 2)

=
O(N2K2W 2)
1
nc
O(N2K2W 2)

= nc (4)

In these experiments, two platforms were selected to de-

termine the performance of the standard version. The first

was a multicore platform and the second a MIC coprocessor

platform. The details of these platforms are listed in Table I.

The experiments used three groups of datasets of different

sizes, but extracted from the same original Landsat-7 satellite

image (GeoTiff format) with sizes of 512*512, 1024*1024,

and 2048*2048. The noise parameter σ of the datasets was

set to 50. On the multicore platform, the maximum number of

open threads was set to 12 so that one core was responsible

for one thread. The maximum number of threads on the MIC

can be set to as many as 236 (because there are 60 cores

in total, and every core has 4 SMT, but one core is reserved

to manage and control communications between the host and

device ends). The calculated speedups are shown in Fig.6.

Fig.6 (a), shows that the actual speedup increases linearly
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TABLE I
DEVELOPMENT PLATFORMS AND THEIR CONFIGURATIONS.

Platform Configuration Soft Wares Installed

Multi-cores Platform
Intel Xeon CPU E5-2697 v2,

12 cores, 2.70GHz 64G RAM

icpc compiler,

Version 15.0.0.090, Red Hat,

Enterprise Linux Server release 6.4

MIC Platform
Xeon Phi Co-processor,

60 cores 1.05 GHz, 64G RAM

icpc compiler,

Version 15.0.0.090, Red Hat,

Enterprise Linux Server release 6.4

 

 
 
 
 

22.84
26.19

28.63

0

5

10

15

20

25

30

35

512*512 1024*1024 2048*2048

Sp
ee

du
p

Image Size

Fig. 7. Speedup changes with image size.

with the number of threads (cores) and agrees well with the

expected speedup. However, Fig.6 (b) shows that the speedup

increases linearly while the number of threads remains below

60. At this point, there is only one thread running in each core.

After this point, the acceleration ratio curve begins to flatten

out. This phenomenon has also appeared in other research

studies [31]. Some researchers believe that this results from

cache competition among concurrent threads [31].

In particular, the acceleration of the test cases with image

sizes 1024*1024 and 2048*2048 reached a maximum when

the number of threads was 236, whereas the case with image

size 512*512 reached a maximum when 200 threads were

involved. The maximum speedups obtained were different,

meaning that speedup was dependent on input dataset size.

Fig.7 shows the maximum speedups that could be achieved

with these three images.

Figure 7 also shows that the parallel NLM algorithm can

greatly reduce running time and can achieve good speedup.

The smallest speedup, 22.84, was obtained with an image size

of 512*512, and the greatest speedup, 28.63, was achieved

with an image size of 2014*2014. This performance was

satisfactory, but the acceleration effect was inconsistent for

different image sizes. The speedup showed a strange stepped

distribution with increasing image size. The speedup obtained

with the 2048*2048 image size was greater than in the other

cases. According to the theoretical analysis, this phenomenon

should not occur, but it provided the motivation for further

optimization of the parallel NLM algorithm.

IV. OPTIMIZATION OF THE PARALLEL NLM ALGORITHM

The speedups obtained considered only the main body of

the NLM algorithm, i.e., the part with the two-layered loop.

The reference time of the sequential algorithm, T1 in Equation

(1), was the running time for the algorithm that used only a

single core on a common multicore CPU platform. Note that

(1) the speedup increased almost linearly when the number

of threads was less than 60, but after that, its growth slowed

down; and (2) the speedup obtained changed with input image

size and showed a step-like distribution. After scrutiny of the

performance measurement data, it was concluded that the step-

like distribution of the speedup was due to (1) the cost for

MIC initialization and (2) the lack of a satisfactory coarse-

grained strategy and adequate load balancing among threads.

The following sections will address these issues.

A. Optimization Measure 1: MIC Pretreatment

In parallel mode, as described above, the parallel program is

started by the CPU and first performs some serial operations;

when it first encounters the “offload” statement (the blue

box in Fig.5), it switches the next computing operation from

the CPU to the MIC. At this point, the MIC card carries

out certain initialization operations and then starts parallel

processing of the “for” loop. After this, the main part of the

NLM algorithm is finished. Finally, the program at the CPU

end regains control and terminates the program. The present

research has considered only the speedup obtained on the MIC,

i.e., the time taken for the computing task to run from start

to finish on the MIC. Initializing the MIC requires some time

(about 0.1 s or more), which reduces the speedup obtained to

some extent. Because this initialization time is more or less

constant, its influence on the speedup obtained is different for

different input image sizes. For smaller images, the parallel

part takes proportionally less time, and therefore the influence

of initialization is proportionally greater. The opposite is

true for larger files. As a result, the MIC initialization time

contributed to the ladder-like speedup distribution to a certain

extent. The algorithm was therefore optimized by moving MIC

initialization from the parallel part to the CPU end. In other

words, the statement in the blue box in Fig.5 was moved to

the beginning of the program.

B. Optimization Measure 2: Improve the Coarse-Grained

Loop Level

As described in Section 3, the coarse-grained method was

removed from the outer loop layer to make the algorithm par-

allel using OpenMP. This method has the advantage of being

easy to implement. However, it has some performance prob-

lems. For instance, taking a 512*512 image as an example,



JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 7

TABLE II
ELAPSED TIME AND IMPROVEMENT RATIO COMPARISON FOR THE TWO OPTIMIZATION VERSIONS.

Image Size (M)
Time Duration of

Standard Version (s)

Time Duration

of Opt1 (s)
Opt1 Improvement (%)

Time Duration

of Opt2 (s)
Opt2 Improvement (%)

512*512 9.63 8.45 12.25 6.12 27.55

1024*1024 33.34 32.25 3.25 27.6 14.42

2048*2048 125.33 124.20 0.90 113.37 8.72

(a) (b) 

…
whf=Width*Height
For cell=0 To whf

…
x=cell%Width;
y=cell/Height;
...
// Calculate the searching window
// Calculate the weight
// Normalized the weights
// Assignment
...

End For
// Subsequent processing
...

...
For cell=0 To whf // The outer loop

…
For ai=0 To 4 // The inner loop

x=(cell*4+ai)%Width;
y=(cell*4+ai)/Height;
...
// Calculate the searching window
// Calculate the weight
// Normalized the weights
// Assignment
…

End For
End For
// Subsequent processing
...

Fig. 8. Pseudocode for the optimized version.

the outer loop (processing by height) is in parallel mode, but

the inner loop is still in sequential mode (processing by width,

512 pixels in a line). Hence, 512 lines are distributed among

236 threads, meaning that every thread must process more

than two (512/236=2.17) lines. Under this circumstance, there

are 40 threads (512-236*2) that need to process three lines, at

which point the other 196 threads are in a waiting state. This

could also occur with images of different sizes. For instance,

with 1024*1024 and 2048*2048 images, there are 156 and

116 threads respectively in this idle state. This explains the

better performance in the 1024*1024 and 2048*2048 cases

and contributes to the step-like speedup function obtained.

In an effort to optimize the method, the two-layered loop

was redesigned into a one-level loop (illustrated in Fig.8

(a)). However, this method encountered stability issues, and

sometimes the result was not correct. In the one-level loop

method, every core has four SMT, meaning that the 236

threads are created by the 59 cores. Sometimes sequential

pixels end up being processed on different cores. To avoid

this, the restriction should be imposed that each group of four

pixels is assigned to one core. The problem was solved by

rearranging the loop from a one-level loop (Fig.8 (a)) to a new

two-level loop (Fig.8 (b)). By using this method, the number

of threads in a waiting state was reduced to a minimal level.

In the optimized parallel version, the outer-layer loop is

expanded to its maximum extent. This helps reduce the ratio of

idle threads to all threads and can make full use of computing

resources. Note that this measure can in principle also be

replaced by the “collapse” optimization technique in MIC

programming. This is a very simple and effective way to solve

multiple for loops. However, it encounters the same problem

as the methods shown in Fig.8 (a) in practice.

 

22.84
24.83

27.6

31.91

26.19 27.07
30.58 31.63

28.63 28.89
31.35 31.65

0

5

10

15

20

25

30

35

Standard Version Opt1 Opt2 Opt1+Opt2

Sp
ee

du
p

512*512 1024*1024 2048*2048

Fig. 9. Speedup changes with number of threads.

C. Experiments on Optimizing Parallel Algorithms

Based on the standard parallel NLM algorithm and using

the optimization methods presented above, two optimized

parallel algorithms were implemented: Opt1-pretreatment and

Opt2-coarse-grained. The average running times of these two

optimized versions were obtained, the corresponding improve-

ments (Tab. II) were calculated, and their speedups were

compared (Fig. 9). In the experimental results presented below,

the input data were identical to those used in testing the

standard version.

Table II shows that: (1) both kinds of optimization method

are effective, and the running time can be greatly shortened,

especially for smaller input images; and (2) the second op-

timization method has a stronger performance enhancement

effect than the first.

Fig 9 compares the speedups achieved with the standard

method, Opt1, Opt2, and a combined optimization. The figure

shows that for different input data sizes, (1) the speedup of the

standard version presents a sharp ladder-like distribution with

obvious differences for different input sizes; (2) both Opt1

and Opt2 showed increased speedup, but the trend slowed

down with larger images; (3) with the combined optimization,

the speedups obtained for different image sizes remained

constant at the maximum value of 31X. Furthermore, the step

distribution disappeared, in accordance with the theoretical

analysis.

V. CONCLUSIONS AND FUTURE WORK

This study has introduced the principle of the NLM algo-

rithm and has presented a design and several implementations

of the corresponding parallel algorithm on an Intel MIC

architecture. The standard parallel version using “offload”

mode can achieve a speedup of 20-28X. Experiments found
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that the speedups achieved showed a step-like distribution for

different RS image sizes. Hence, the algorithm was further

optimized using two approaches. One involved considering

MIC initialization time, and the other involved improving the

coarse-grained loop level. Comparison of the basic parallel and

optimized versions revealed that the optimized parallel NLM

algorithm can satisfactorily eliminate the ladder-distribution

phenomenon.

In summary, the parallel algorithm can be used for real-time

image denoising and large-scale image processing applications

on an Intel MIC platform. The parallel algorithm presented

here still has room for further optimization in the following

directions: (1) many optimization measures have not been

considered in this research, for instance, optimization methods

involving memory management, cache use, and data transfer

[32]; (2) when the MIC starts computing, the CPU becomes

idle, meaning that the available computing resources are not all

efficiently used. The authors are working on a dynamic load-

balancing parallel NLM algorithm that can make full use of

the computing capacity of both the MIC and the CPU; (3) un-

fortunately, there was only one MIC card in the experimental

setup used here. Actually, modern computing platforms often

have several MIC devices. A suitable scheduling algorithm

should therefore be designed to enable the code developed in

this research to make full use of computing resources under

this circumstance.
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