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Abstract—The dense deployment of heterogeneous networks
(HetNets) have shown to be a promising direction to cope with the
capacity demands in the future 5G wireless networks. The large
number of small cell base stations (SBSs) in HetNets intended to
help in achieving the capacity requirement of 5G networks, can
also result in a significant increase in energy consumption. This is
due to the fact that there might be few associated users in certain
SBSs, intelligently switching them to low energy consumption
modes or turning them off without seriously degrading system
capacity is desirable in order to improve the energy savings
in the HetNets. Also, the unnecessary handovers caused due
to this dynamic power level switching in the SBS should not
be neglected. In this paper, fuzzy logic based game-theoretic
framework is utilized to address these issues and examine the
energy efficiency improvements in HetNets. We design fuzzy
inference rules for handover decisions and target base station
selection is performed through a fuzzy ranking technique, while
simultaneously considering both energy/spectral efficiency and
signaling overhead. The results show that energy consumption
can be improved considerably especially for high user velocities,
while also managing ping-pong handovers.

Index Terms—energy efficiency, fuzzy logic, game theory,
heterogeneous networks, sleep mode, ON/OFF operation, small
cells, spectral efficiency,

I. INTRODUCTION

Heterogeneous networks (HetNets) consisting of dense de-

ployment of small cells within the traditional macro cellular

network is a promising approach to cope with the future

explosive mobile traffic demand. However, such uncoordinated

and massive deployment of small cells can lead to significant

increase in energy consumption due to the energy costs of

cells even when they have no associated user. It is expected

that the carbon foot print of the mobile communication sector

will increase up to twofold by 2020 from 2013, which is 201
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Mega-tons of CO2 emissions. Therefore, reducing the energy

consumption has become a major priority in the recent years.

According to China Mobile, the base stations (BSs) con-

sume 72% of the total power consumption in cellular net-

works [2], which will be further increased with the additional

deployment of the small cells. Therefore, network operators

are seeking use of efficient BS power management techniques

to reduce their operational expenditures. One approach is to

introduce discontinuous transmission (DTX) on a BS when it

is not serving any users as mentioned in [3]. In DTX, the cells

are configured with almost blank subframes called multicast

broadcast single frequency network for the efficient energy op-

eration in LTE. Another approach is to turn off the BSs when

there are no users communicating with them or when they

are under-utilized [4]–[12]. While dynamically placing small

cells into sleep mode helps in saving energy in HetNets, this

may come at the expense of throughput degradation, handover

failures, and user outages. Therefore, effective techniques that

can reduce the network energy consumption without causing

critical performance degradation are required.

Due to the large number of network parameters involved

during the mobility management of modern cellular net-

works, solving of a complex optimization problem that in-

volves metrics such as energy efficiency, handover perfor-

mance, and throughput can be intractable. Moreover, the

observed/measured parameters such as the link quality, cell

load, and user velocity, among others, may be imprecise and

subject to uncertainties, introducing high complexity with

limited benefit. Due to the above issues, in this paper we

introduce a fuzzy logic based game theoretic approach for

dynamically placing cells into sleep mode while also con-

sidering throughput and handover performance. In this way,

it can be possible to have simplified optimization problem

using the membership functions together with a game theoretic

approach.

We aim to optimize the fuzzy rules to obtain ideal trans-

mission BS power levels for serving the UEs. Furthermore, a

context-aware fuzzy handover scheme is proposed to minimize

the unnecessary frequent handovers caused due to the dynamic

power level switching of the BS. Specifically, the fuzzy han-

dover scheme consists of two modules: 1) handover decision

and 2) target BS selection. For the handover decision, we use

fuzzy inference system to check for the handover condition

considering multiple user context parameters such as velocity,

signal to interference plus noise ratio (SINR), throughput

and BS load. Novel analytic expressions are derived for the

proposed game-theoretic approach considering fuzzy handover
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scheme. Finally, the fuzzy technique for order of preference by

similarity to ideal solution (FTOPSIS) ranking method [13],

[14] is used to select the best BS during the target BS selection

stage of the handover process.

The rest of the paper is organized as follows. First, a review

of the existing literature related to use of ON/OFF switching

and fuzzy logic based techniques for energy efficiency im-

provements in HetNets is provided in Section II. The system

model for the HetNet scenario is given in Section III, while

a game theoretic model for ON/OFF switching is presented

in Section IV. A context-aware fuzzy handover mechanism is

introduced in Section V. The simulation results are explained

in Section V, and the last section concludes the paper.

II. LITERATURE REVIEW

Centralized/distributed switching algorithms were proposed

in [4]–[10] to turn off the BSs, and the associated users are

handed over to the neighboring BSs, which yields the signifi-

cant savings in the energy expenditure for the cellular network

operators [15], [16]. The BSs can also adjust their transmission

power, and antenna tilt angles according to the users’ traffic

load instead of shutting down completely [11], [12], [17]–

[19]. In [20] a game theoretic framework was proposed where

small base stations are able to autonomously adjust their trans-

mission power without the need of a centralized controller.

There is always a tradeoff between achieving energy efficiency

and satisfying users’ QoS constraints and the performance

of centralized and distributed algorithms were analyzed with

users’ outage in [18], [21] and rest of other related works

were summarized in [22], [23]. However, these works did not

explicitly account for the mobility of users in HetNet.

The mobility aspects of the energy efficiency is challenging

and hence difficult to analyze theoretically. In the ON/OFF

switching setting, there are unnecessary handovers due to the

mobility of the users and also additional user load bought by

the switched off BS on the neighboring BS. As a result, there is

a significant increase in the signaling load on the network. The

authors in [24] aim to balance between the user association

with the small cells and its power consumption through game

theoretic framework and showed that signaling load can be

reduced. Nevertheless, the handover scheme proposed in [24]

did not account for the user speed and it is not robust to

the handle the imprecise nature of the handover parameters

in practical wireless cellular networks.

Fuzzy logic approach seems suitable to handle the impreci-

sion of the practical wireless cellular networks. The concept of

fuzzy sets was proposed by Zadeh which maps the set elements

to a membership function which indicates the degree of truth

belonging to the set. This helps to express the imprecision,

vagueness etc., in the real wireless cellular networks which

cannot be easily studied. The authors in [25], [26] showed

that incorporating fuzzy logic in the learning systems showed

improved performance and was reliable in extremely noisy

environments. Additionally, fuzzy logic framework allows the

usage of human knowledge in the form of if-then inference

rules. In [27], rule table was provided to reduce the ping-pong

effects in an LTE network. The human based rules in fuzzy

logic may not be optimal and requires the optimization tech-

niques. The adaptive network fuzzy inference system proposed
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Fig. 1: Two-tier HetNet with small cells and mobile users.

in [28], [29] used neural network approach to simplify the if-

then rules of the fuzzy inference system and in [30], [31],

the inference rules of the fuzzy logic controller were refined

using learning techniques to minimize the signaling load. The

handover scheme in [30] considers only signal strength metric

for the handover decision which can lead to high signaling

overhead in the case of users traveling with high velocity in a

densely deployed HetNet. Therefore context-aware handover

scheme which considers multiple attributes (velocity [32],

[33], signal strength, QoS etc.), are necessary to minimize

handovers and ensure seamless service to the UEs.

III. SYSTEM MODEL

We consider two-tier HetNet which consists of macro BS

(MBS) and several overlaid small cell BSs (SBSs) as shown

in Fig. 1. The BS set B = {b1, ..., bNBS
} consists of MBS

set M = {m1, ...,mNMBS
} and SBS set S = {s1, ..., sNSBS

}
(B = M ∪ S). The UEs K = {k1, ..., kNUE

} are uniformly

distributed over the entire area. For the simplicity, we assume

that all of them use the same frequency band. We also consider

that the UEs move in a random walk fashion, where at each

time increment dt, and its velocity is expressed as follows

υt = υt−1ρ+
√

1− ρ2υmeanV , (1)

where ρ = e
−dt.amean

υmean represents the correlation of the velocity

between time increments amean and υmean, which are mean

acceleration and velocity, respectively. The magnitude of the

velocity vector V is Rayleigh distributed.

If the UE k is served by the BS b ∈ B whose downlink

transmit power at time instant t is given as pb(t), then the

signal to interference plus noise ratio (SINR) experienced by

the UE is given by

γkb (x, t) =
pb(t)g

k
b (x, t)

∑

b′ 6=b

pb′(t)gkb′(x, t) +N0
, (2)

where gkb (x, t) is the free space pathloss from the UE location

x to the BS, and N0 is the noise power. The maximum

throughput attained at the UE with bandwidth B is given by

the Shannon equation written as

Ck(x, t) = B log2(1 + γkb (x, t)) . (3)
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Further, we consider that UEs are guaranteed to achieve the

constant bit rate Rk as a result of the load experienced by the

BS, which can be expressed as

τb(t) =
∑

kǫKb

Rk

Ck(x, t)
. (4)

This determines the total fractional time required by the BS

to deliver rate Rk for its associated users denoted as Kb.

The power consumption model in [34] evaluates the total

power needed by a BS to generate RF output power at its

antenna elements and this can be expressed as

Ptotal =
PBB + PRF + PPA

(1− σDC)(1− σMS)(1− σcool)
, (5)

where PPA = Pb

η(1−σfeed)
is the power consumed by the power

amplifier of efficiency η to transmit RF output power Pb, while

PBB and PRF are the powers consumed by base band and RF

components of the BS, respectively. Parameters σfeed, σMS

and σDC denote the loss fractions of feeder, main supply and

DC-DC power supply, respectively. The loss fraction of the

cooling equipment σcool will be zero for an SBS due to the

absence of the cooling equipment. The BS can enter into the

micro sleep mode by switching off its power amplifier in the

case of low traffic load scenarios. The power consumption in

the micro sleep mode can be written as

Psleep =
PBB + PRF

(1− σDC)(1− σMS)(1− σcool)
. (6)

The energy efficiency can be improved, if the BS is able

to autonomously adjust their transmission power Pb based on

the associated user traffic load in (4). In the following section,

the BS power level switching problem is analyzed using the

approach of game theory.

IV. PROPOSED GAME THEORETIC APPROACH

A non-cooperative game G = (B,Ab, ub), where the set of

BS (B) are the players and each of them b ∈ B selects their

action from the finite set of transmission power levels Ab, is

formulated in this section. The utility function of the BS is

given by ub : Ab → R
−.

The set of BS action Ab = {a
(1)
b , a

(2)
b , ..., a

(|Ab|)
b } comprises

of the action set of MBS Am∈M = {0, Pmax} and action set of

SBS As∈S = {0, Pmax

3 , 2Pmax

3 , Pmax} where Ab ∈ Am ∪ As.

At each time instant, the BS b ∈ B selects its action ab(t)
with a certain probability which forms the basis of the mixed

strategy concept and it is given by

πb(t) = P
(

ab(t) = fb
)

, (7)

where fb is the outcome of a selected action by randomization

device called roulette wheel. The main objective of the game

is that each BS iteratively selects its best action which results

in the highest utility.

In this paper, we consider the following multi-criteria utility

function for handover decisions

ub(t) = −ωP̃b(t)− φτ̃b(t)− ψs̃b(t) , (8)

where P̃b(t) is the power consumed by the BS in either

active or sleep state given in (5) and (6), respectively, τ̃b(t)

is the BS load given in (4), s̃b =
NPP,b(t)
nb(t)

represents the

fraction of ping-pongs handovers1 NPP,b compared to total

handovers nb(t), while ω, φ, ψ represent their corresponding

weights. It is desirable to reduce the number of ping-pong

handovers in a network, since they trigger exchange of the

coordination messages among the BSs (hence, resulting in

higher background traffic), and the packets intended for the

desired user may be lost during the frequent handovers [35].

The game G admits at least one equilibrium, since the

action set Ab is discrete and finite. The outcome of this

non-cooperative game results in suboptimal mixed strategy of

Nash equilibrium. Therefore, other solution concepts, which

achieve optimal expected payoff for a player, need to be

obtained. Auman et al. showed in [36] that allowing the

players to correlate their actions in non-cooperative games can

achieve the equilibrium better than convex hull of the Nash

equilibrium. For instance, if the signals are generated based on

the common knowledge of the players’ actions in a game, then

the actions of the players, which are drawn from a distribution

based on the generated signals, will result in a correlated

equilibrium (CE). Here, the player is more likely to select

an action which yields the best expected payoff conditioned

on player seeing its own action.

We consider a slight variation of the CE scenario, where

the player has the best expected payoff for an action before

seeing the action itself. Such a distribution is called “coarse

correlated equilibrium” defined as follows.

Definition 1. A coarse CE is a probability distribution πb that

has for every player b ∈ B and his every action a′b ∈ Ab:

∑

a′

−b
∈A−b

(

ub(a
′
b,a−b)π−b,a−b

)

−
∑

a∈Ab

(

ub(a)πb,a

)

≤ 0 (9)

where ub(a) is the utility of the player when action a is drawn

from the distribution πb and π−b,a−b
is the marginal distribu-

tion of a player b action computed using the joint distribution

of its action a′b with other players’ actions a−b ∈ A−b which

is also expressed as

π−b,a−b
=

∑

a′

b
∈Ab

π(a′b, a−b). (10)

The empirical distribution of the play in the regret matching

adaptive procedure converges to the CE distributions as time

t → ∞ [37]. For the finite time interval and any ε > 0, it

converges to a distance lesser than ε from the CE. We follow

this regret matching framework and for the finite time interval,

the empirical distribution converges to ε > 0 coarse correlated

ε-equilibrium which is basically obtained by replacing the

right hand side in (9) by ε. In the following section, we

explain the proposed regret matching learning procedure to

attain coarse correlated ε-equilibrium which yields optimal

expected payoff for every player.

A. Regret Based Game Theoretic Learning Scheme

The basic idea of the regret based learning scheme is that

the player evaluates the regret for not having played the action

1We define ping-pong handover as a handover where a user equipment stays
less than one second in a cell before making a new handover.
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and aims at minimizing the regret by changing its actions over

the time. Hence, the action played yields best expected utility.

Let us assume the game G is repeatedly played at every time

instant t and the BSs are constantly changing their actions

based on the outcome from their respective distribution πb(t)
and observe the utility ub(t) which is defined in (8) and can

simultaneously capture transmit power, load, and ping-pong

handovers. The goal is to adapt the mixed strategy πb so that

it minimizes the regret rb(t) over the time. Usually the regret

evaluation needs to know the utility ub(t) and this requires

the knowledge of the other BS actions due to the load term

τ̃b(t) in (8). However, this is not feasible in practice due to

the distributed nature of BSs. Estimation also needs to be

performed as follows [20]:

ũ
(l)
b (t+ 1) = ũ

(l)
b + Λb(t+ 1)

(

u
(l)
b (t)− ũ

(l)
b

)

,

r̃
(l)
b (t+ 1) = r̃

(l)
b +Υb(t+ 1)

(

ũ
(l)
b − u

(l)
b (t)− r̃

(l)
b

)

,

π̃
(l)
b (t+ 1) = π̃

(l)
b +∆b(t+ 1)

(

Gl
b(r̃

(l)
b (t+ 1))− π̃

(l)
b

)

,

Λb, Υb and ∆b are the learning rates for the utility, regret

and mixed strategy probability, respectively. Generally, the

learning rate follows the scheme ( 1
t
)e, where e is the exponent

of the learning rate similar to all BSs. The estimation of the

mixed strategy πl
b(t) of actions is performed according to the

Boltzmann-Gibbs (BG) distribution Gl
b which weighs them

relatively based on their regrets. Hence, highest regret has the

maximum probability and the BSs are more likely to pick

these actions through roulette wheel selection in (7). The BG

distribution can be written as [20]

G
(l)
b

(

r̃lb(t+ 1)
)

=
exp

(

κbr̃
(l)
b (t+ 1)

)

∑

l′ǫAb

exp
(

κbr̃
(l′)
b (t)

)

, (11)

where κb > 0 is a temperature parameter which balances the

exploitation of the actions with higher regrets by exploring the

actions with lower regrets. In this way, the BS picks the best

action with the evolution of time and its mixed strategy πb(t)
converges to the coarse correlated ε-equilibrium.

The frequent change in the power levels of the regret

matching learning scheme results in the increased signaling

load when the handover decisions are made on a single

metric such as the signal strength. Therefore, the multi-criteria

handover decision schemes are necessary. In this paper, we

propose the context-aware multi-criteria handover scheme to

minimize the unnecessary handovers, which will be discussed

further in the following section.

V. CONTEXT-AWARE FUZZY HANDOVER SCHEME

The proposed fuzzy context-aware handover scheme con-

tains two stages: i) handover necessity decision, and ii) target

BS selection.

A. Handover Necessity Decision

In the first stage, the user determines the handover decision

condition based on the handover factor determined by the

multi-criteria fuzzy logic controllers (FLCs) as seen in Fig. 2.

We consider SINR, throughput and BS load as given in eq. (2),

Ha dover  ecessity esti atio   odule

SINR

Rate

UE‐BS 
Distance

Velocity

SINR‐
Rate FIS

FLC‐

Distance
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Handover 
FIS

FLC‐

HO 
Factor

Fig. 2: The proposed fuzzy logic controller for the handover

decisions, composed of three fuzzy inference systems (FIS).
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Fig. 3: Membership functions for different user velocities.

eq. (3) and eq. (4), respectively. In addition to these parame-

ters, UE-BS distance and velocity of the users are also taken

into account to determine the handover decision condition.

The fuzzy reasoning helps to deal with the imprecise nature

of the parameters involved in the handover decision condition

and also it is easy to interpret the influence of these multi-

attribute parameters on the handover decision due to the usage

of if-then rules.

The fuzzy if-then rules maps the input to suitable output

space. To reduce the number of if-then rules, the fuzzy logic

controllers are connected in a parallel fashion. The SINR

and rate parameters are passed to FLC-1 to obtain SINR-

Rate factor; similarly the Distance-Load factor is obtained

using FLC-2 as shown in Fig. 2. The output of these two

FLCs together with the velocity parameter are fed to the

handover FIS (FLC-3) to determine the handover factor. Next,

we determine the impact of parallel combining fashion on the

if-then rules reduction. For instance, if all five parameters

having three fuzzy sets as low, medium and high directly

fed to the handover FIS, then the number of if-then rules

of the handover FIS will be 35 = 243, which is reduced

to 33 = 27. This is due to the parallel combination of the

handover context parameters in the FLC-1 and FLC-2. Usually,

the fuzzy inference process in a FLC consists of several steps.
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In the first step fuzzification of the inputs are performed, the

crisp values at the input of FLC are fuzzified using a mem-

bership function, which is designed purely based on human

intuition. To this end, triangular h(x) and trapezoidal p(x)
membership functions are employed, and can be expressed as

follows

h(x) =

{

x−a
b−a

, a ≤ x ≤ b
c−x
c−b

, b ≤ x ≤ c
, p(x) =











x−l
m−l

, l ≤ x ≤ m

1, m ≤ x ≤ n
u−x
u−n

, n ≤ x ≤ u

.

The parameters [a, b, c] and [l,m, n, u] of the h(x) and p(x),
respectively represent the bounds of the input space. The

membership functions for the user velocity consists of three

fuzzy sets namely low, medium and high as shown in Fig. 3.

The low and high fuzzy sets are described by trapezoidal

membership functions, while the medium fuzzy set uses the

triangular membership function. It is important to notice that

the membership functions are overlapping due to the smooth

transition boundary which is an underlying characteristic of the

fuzzy sets; i.e., the precise input values during fuzzification

process can belong to more than one fuzzy set with the

different degree of membership shown in Fig. 3. For instance,

user velocity 30 km/hr belongs to the low fuzzy set with a

degree of 0.9 and to the medium fuzzy set with a degree of

0.25. Hence, this might trigger several if-then rules as a result.

In the second step, the if-then rules associated with the

membership functions are identified and their respective firing

strength is calculated. Suppose that one of the if-then rules

of the Handover FIS shown in Fig. 2 is given as “If (Rate-

SINR-factor is Low) and (Distance-Load-factor is Medium)

and (Velocity is High) then (MBS-HO-factor is Medium)”,

where AND logical operation is a simple arithmetic product

and the firing strength for rule i can be expressed as follows:

αi = µLow(x1)× µMedium(x2)× µHigh(x3), (12)

where µLow(x1), µMedium(x2), and µHigh(x3) are the mem-

bership functions of the input rate-SINR-factor, distance-load-

factor and the velocity, respectively. Similarly, implication of

the if-then rule is performed by multiplying its firing strength

αi with the output membership functions to obtain the rule

output. The output membership functions are either linear or

constant, and therefore, we consider only Sugeno type fuzzy

inference system [38], [39].

In the final step, defuzzification is carried out and the final

precise output of the FLC is the weighted average of all the

rule outputs, given as

w =

N
∑

i=1

αizi

N
∑

i=1

αi

, (13)

where zi is the output membership value for the rule i. An

illustration of the weighted average value w for the Handover

FIS in the case of MBS and SBS is shown in Figs. 4 and 5,

respectively. We observe that with increase in the velocity, the

handover factor reduces for MBS, while it increases for SBS

with respect to the proposed if-then rules for the Handover

FIS shown in Fig. 2. This implies that a UE residing at MBS
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Fig. 4: Design of the handover FLC for the MBS.

and traveling at higher velocity will have a reduced likelihood

of a handover. However, it increases for a UE associated

with an SBS. In Figs. 4(a) and 5(a), the handover factors are

shown as the functions of the velocity in the different distance-

load factors, while Figs. 4(b) and 5(b) show the handover

factors under the different rate-SINR factors for the MBS

and the SBS, respectively. We can see that the possibility of

the handover increases as the distance-load factor increases,

whereas it decreases with the increase in the rate-SINR factor.

This implies that proposed if-then rules follow general trend

on how the chances of the initiating handover varies with the

parameters such as distance, rate, load and SINR.

Once the HO factor is obtained, it is compared with the

threshold to determine the handover decision condition. If

the HO factor exceeds the threshold, a handover is initiated.

The threshold should be carefully adjusted to prevent the

unnecessary handovers among MBSs and SBSs.

B. Target BS Selection

The second stage of the proposed handover scheme is the

target BS selection. We follow the multi attribute decision
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Fig. 5: Design of the handover FLC for the SBS.

making (MADM) scheme called fuzzy technique for the order

of preference by similarity to the ideal solution (FTOPSIS)

explained in [14] for the BS selection. The overall proposed

fuzzy handover scheme is summarized in Fig. 6. The BSs are

ranked based on their own ranks, and the BS with highest

rank is selected to make a handover. The proposed fuzzy

handover scheme with handover necessity decision and target

BS selection is summarized in Fig. 6.

VI. SIMULATION RESULTS

Our proposed context aware fuzzy handover scheme is

evaluated using the rudimentary network emulator (RUNE) in

Matlab simulation platform. We consider a simulation scenario

as seen in Fig. 7 with a single macrocell, as well as multiple

SBSs/UEs uniformly distributed over the geographical area.

Unless specified, key simulations parameters are as given in

Table I. The BSs switch their transmission power levels based

on the regret learning scheme shown in Section IV-A and it is

worth mentioning that we do not consider wake-up mechanism

for the BS. Therefore we assume that there is no delay when

Yes

No

Start

Read the attri utes 
Load, Dista e, 
Velocity et .

Fuzzifi atio of the 
attri utes

Cal ulatio  of the 
ha do er fa tor usi g 

FLCs

Ha do er 
fa tor > 
Threshold

A

A

O tai  the para eters 
fro  all the BS

Ra k the BSs a ordi g 
to FTOPSIS sele tio

Perfor  ha do er to 
the BS  ith higher 

ra k.

Fi ish

Fig. 6: Proposed fuzzy logic handover scheme: handover

necessity decision (left), and target BS selection (right).
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and circles represent the coverage of the SBSs.

TABLE I: Simulation parameters.

Parameter MBS PBS

Cell radius 250 m 20 m

Number of cells 1(NMBS) 7(NSBS)

Minimum distance
75 m for MBS-SBS
35 m for MBS-UE

40 m for SBS-SBS
10 m for PBS-UE

Minimum load 0.1 0.1

Num. power strategies 2 4

Maximum TX power 16 dBm 0 dBm

System Paramters

Packet arrival rate 1 kbps

Mean packet size 1800 bits
Channel bandwidth (B) 10 MHz

Number of users (NUE) 15

Time interval between iterations 1 ms

it wakes up from the sleep mode. We study how the user

mobility influences various BS performance parameters such

as the energy consumption, the ping-pong rate, and the offered

throughput, separately in the following sections.
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A. Impact on BS Energy Consumption

The SBS energy consumption versus time is evaluated for

user velocities v = {30, 60, 120} km/hr and is shown in Fig. 8.

We can see that the BS optimizes its energy consumption with

time through the proposed regret learning scheme. The energy

consumption is the lowest for the high velocity users, since the

users are served by the MBS and handovers are not triggered

by the FLC as implied by Fig. 2. As a result, the SBSs go into

sleep mode which decreases the energy consumption, with a

downside that it increases the load on the MBS. In the case of

lower velocity users, handovers are more likely to be triggered

to the SBS due to the velocity attribute considered in the fuzzy

reasoning of the FLC in Fig. 2, which rejects the handover to

the MBS. Therefore, more SBSs are active and this in turn

increases the energy consumption.

In Fig. 9, considering that the energy consumption reaches a

steady state after some time (e.g., as shown in Fig. 8), we plot

the average SBS energy consumption as a function of number

of users in the network considering different velocities and

using our proposed handover mechanism in Fig. 2. We can

observe that when the user velocity is highest at 75 km/hr,

the SBS energy consumption is minimized, since more users
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Fig. 10: Average SBS load as a function of the number of

users (NSBS = 7).

are kept at macrocell. On the other hand, for lower velocities,

average SBS energy consumption is gradually increased, since

more users are served by the SBSs. Moreover, when the

number of users is increased, the SBSs also move into active

mode to serve those users, hence increasing further the overall

energy consumption. To support the results in Fig. 9, we

further plot the average SBS load as a function of number

of users in Fig. 10, which show a similar behavior with the

energy consumption results in Fig. 9.

B. Impact on Ping Pong Performance

The average ping-pong handover rate as a function of

number of users is plotted and shown in Fig. 11. We observe

that when the users have a velocity of 30 km/hr, there are

no ping-pongs observed regardless of the number of users.

For higher velocities, ping-pong handovers are observed. The

ping-pong handover rate increases with user count, since the

number of users also increase the load in the cells, which im-

pacts the utility function in (8) and hence triggers handovers.

We observe that the ping-pong rate is the highest for user

velocity of 75 km/hr, rather than 80 km/hr. This is due to the

handover decision framework discussed in Section V, where

high velocity users are inclined to remain at the MBS, which

tends to reduce ping-pong handovers. In order to validate this

observation, ping-pong rate is plotted as a function of user

velocity for different NSBS in Fig. 12, which we observe to be

aligned with the results in Fig. 11. In addition, we observe that

ping-pong rate increases with NSBS, since it becomes more

likely to have handovers among neighboring SBSs. On the

other hand, for user velocities higher than 100 km/hr, ping-

pong rate sharply drops for NSBS = 20, since many of the

users are kept at the MBS, and the SBSs are placed into sleep

mode.

C. Impact on BS Throughput Performance

The average SBS throughput as a function of number of

users for user velocities v = {30, 45, 60, 75} km/hr is shown

in Fig. 13. We observe that the throughput per SBS is lower

for higher user velocities, since the users are inclined to stay at
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the MBS. For lower velocities, the throughput is increased as a

result of more users associating with small cells. Furthermore,

we plot the average SBS throughput as a function of user

velocity in Fig. 14 for 15 SBSs and with different NUE, which

is aligned with the observations in Fig. 13. We also observe

that the average throughput is maximum for NUE = 20 users,

but for higher velocities, throughput sharply reduces to similar

values for all scenarios, since only small number of users are

served at the SBSs.

VII. CONCLUSION

In this paper we propose a fuzzy logic based game theoreti-

cal framework for energy efficiency improvement in heteroge-

neous networks. Modified fuzzy decision rules were developed

for the handovers and the target BS selection. Moreover, novel

regret based game theoretical learning scheme was proposed

for the energy efficient operation. It was shown that the pro-

posed fuzzy-game theoretical technique improved the energy

consumption significantly especially for the small number of

active users considering the high user velocities with managing

ping-pong handovers and cell loads. The parameters of the

proposed decision framework can be tuned flexibly by a

network operator in order to operate in the desired regime of

energy efficiency, ping-pong handover rate, and throughput.

Our future work will build on the preliminary findings in

this work to develop the proposed architecture by considering

simultaneous deployment of small cells at mmWave bands and

at lower frequency bands, where directional transmission at

mmWave SBSs can facilitate sleep mode operation (and energy

saving) of other SBSs.
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