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Abstract—Cell planning (CP) is the most important phase in
the life cycle of a cellular system as it determines the operational
expenditure (OPEX), capital expenditure (CAPEX), as well as
the long-term performance of the system. Therefore, it is not
surprising that CP problems have been studied extensively for
the past three decades for all four generations of cellular systems.
However, the fact that small cells, a major component of future
networks, are anticipated to be deployed in an impromptu fashion
makes CP for future networks vis-a-vis 5G a conundrum. Fur-
thermore, in emerging cellular systems that incorporate a variety
of different cell sizes and types heterogeneous networks (HetNets),
energy efficiency, self-organizing network (SON) features, control
and data plane split architectures (CDSA), massive multiple input
multiple out (MIMO), coordinated multipoint (CoMP), cloud
radio access network (C-RAN) and millimeter wave (mmWave)
based cells plus the need to support internet of things (IoT) and
device-to-device (D2D) communication require a major paradigm
shift in the way cellular networks have been planned in the
past. The objective of this paper is to characterize this paradigm
shift by concisely reviewing past developments, analyzing state-
of-the-art challenges and identifying future trends, challenges,
and opportunities in CP in the wake of 5G. More specifically, in
this paper we investigate the problem of planning future cellular
networks in detail. To this end, we first provide a brief tutorial
on the CP process to identify the peculiarities that make CP one
of the most challenging problems in wireless communications.
This tutorial is followed by a concise recap of past research in
CP. We then review key findings from recent studies that have
attempted to address the aforementioned challenges in planning
emerging networks. Finally, we discuss the range of technical
factors that need to be taken into account while planning future
networks and the promising research directions that necessitates
the paradigm shift to do so.

Index Terms—HetNets planning, Energy efficient planning, 5G
network planning

I. INTRODUCTION

Research in cellular planning (CP) is older than the cellular

system itself [1], [2], [3]. However, the first generation of

cellular systems were planned almost manually as the focus

was on providing coverage to serve the elite of society only.

The gigantic subscription fees, low traffic loads, lack of

competition and relative abundance of spectrum at that time

meant not much effort had to be invested to optimize the

network plan. As the trend moved toward ubiquity of cellular

service, the foremost optimization objective that emerged was

to maximize the coverage while keeping the number of base

stations at a minimum [4], [5], [6]. This prompted the first

call for CP optimization techniques to be investigated and

raised the need for automated computer-aided CP tools [7],

[8] thereby triggering the academic and industrial research in

this area that has grown continuously thereafter. We can refer

to this initial era of CP research as classic CP that roughly

spanned over the decade of the 90s. Research in this classic

CP era can be broadly described as being mainly focused

on optimizing the location and number of base stations (BS)

while largely abstracting the parameter optimization of the

base station themselves.

Introduction of data services and, consequently, crowded

networks at the beginning of the new millennium meant

that operators had to tweak and optimize a large number of

BS parameters in the planning process to squeeze out all

possible bits of capacity [9], [10]. This strategy shifted the

focus of CP research from classic and relatively primitive

to a more advanced planning [11] approach that we can

refer to as holistic CP. In holistic CP, in addition to BS

locations, BS parameters such as number of sectors, azimuths,

tilts, transmission powers, pilot powers etc. were considered

while formulating and optimizing the CP problem [12]. This

era of holistic CP can be roughly mapped to the first two

to three quarters of the last decade. Gould [13] described

some challenges that CP engineers faced when doing holistic

CP. While holistic CP solutions with reasonable computation

complexity were still being sought [14], [15], [16], the advent

of LTE and LTE-advanced (LTE-A) at the beginning of current

decade again called for a major revamp of the CP paradigm.

Unprecedented demand for higher data rates combined with

projected proliferation of internet of things (IoT) mean new

technologies such as massive MIMO, smart femto cells [17],

[18], fractional frequency reuse [19], CoMP, C-RAN, and

mmWave had to be resorted to in emerging networks. While

adaptation of these technologies in 5G offers promising av-
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enues for raising cellular system capacity, it put forth a whole

new set of challenges to the CP research community. In addi-

tion, in the wake of the rising cost of energy and environmental

awareness, energy efficiency became a newly added constraint

to the CP problem that asks for a significantly different, if

not totally new, approach toward CP [20]. Furthermore, in

the emerging socio-economic structure, the average revenue

per bit earned by the operators is diminishing. This trend

is pushing operators to rely on self organization network

(SON) features to minimize OPEX and CAPEX. While SON

is a promising paradigm that improves capacity, and reduces

total cost of ownership (TCO) for the network operators [21].

However, it remains unclear how the two paradigms CP and

SON, CP being too old and SON being too young, will fit

together in emerging networks such as 5G.

Regardless of physical layer waveform and spectrum band

adapted for 5G cellular systems, it is clear that the majority

of the 1000x target capacity gain must come from network

densification. Realizing the massive potential of network den-

sification by small cells, industry pundits have been forecasting

an explosive growth of small cells for the past few years.

However, to date, mass deployments of small cells remain

elusive mainly due to the fact that the ultra-dense deployment

of small cells comes with its own set of peculiar planning

challenges. The key challenge being how to plan and roll out a

heterogenous network that will contain unplanned deployment

of small cells.

In the backdrop of these recent developments, this paper

aims to analyse the state of the art in CP and identify the

challenges and opportunities therein in context of emerging

cellular networks such as 5G. Though this article provides a

concise review of selected literature on CP, its main objective

is not to provide comprehensive survey of literature. Instead

this article has following goals:

1) Provide a brief tutorial on CP process to highlight the

conflicting objectives and constraints that make CP one

of the most challenging problems in wireless communi-

cations. (Section II)

2) Provide concise and tabular recap of literature to guide

the reader to sources that have addressed different parts

of CP to date. (Section III)

3) Identify recent trends in CP such as energy-focused

planning, planning for traffic uncertainties and with

CoMP in mind. (Section IV)

4) Provide an overview of the models and techniques that

have emerged recently to improve CP such as models for

cell load, interference, BS location randomness, channel

variation, and total cost of ownership (TCO). (Section

V)

5) Identify the technical factors that make planning a het-

erogenous network (HetNet) different from macro-cell-

only networks and how these factors can be accounted

for in a new HetNet planning paradigm. (Section VI).

6) Finally, identify the prospects, challenges, and oppor-

tunities that lie in the CP paradigm in wake of 5G

and beyond. (Section VII). This section answers the

questions: what, why and how the CP paradigm will

change with the advent of C-RAN, M2M, D2D, control

and CDSA, Massive MIMO, and mmWave in 5G and

beyond.

Fig. 1 shows the contents, contribution, and layout of

this papers details

II. A BRIEF TUTORIAL ON PLANNING PROCESS

The cell planning process consists of three phases: pre- plan-

ning, or dimensioning; detailed planning; and post planning, or

optimization, as shown in Fig. 2. The output of the dimension-

ing phase is an approximate number of BSs required to cover

an area of interest. For a recent tutorial on the dimensioning

process, readers can refer to [22]. The detailed planning phase

allows determining the actual positions of the BSs within the

area to be served. In the optimization phase, which occurs after

the network has been deployed and is running, the network

performance is analyzed, potential problems detected, and

improvements made to enhance network operation [23]. This

paper focuses on the detailed planning phase. In this section,

we briefly review the CP process, including its objectives,

input and output parameters to the optimization process and

to the CP phases. We also give a simple analysis of the

complexity of the CP problem. This section aims to provide the

necessary background needed for the discussion in successive

sections.

A. Cell Planning Objectives

The objectives of CP heavily depend on the business strat-

egy of the operators. The coverage target for different services,

the pricing and throughput policies, regulatory constraints,

market share goals and competition are some factors among

many that define the CP objectives. Ultimately, CP objectives

can be boiled down to the following set of optimization targets

identified in the cell planning problem:

1) Minimize TCO. In addition to minimizing the overall

network cost, this objective may also include minimizing

economic costs related to deployment costs and param-

eter optimization.

2) Maximize capacity. For a single service, this objective

can be defined as the number of users who can be served

at one time. In the case of multi-service traffic, capacity

can be approximated in terms of global throughput.

3) Maximize coverage. This includes satisfying coverage

policy requirements for various services. Up Link (UL)

and Down Link (DL) coverage must be balanced. Both

traffic channels and coverage of common channels must

be considered.

4) Minimize Power Consumption. Health concerns have

motivated the radiated power minimization objective.

However, recent awakening of a desire for greener

wireless systems has added more depth to this objec-

tive. Consequently, power consumption, including fixed

circuit power as well as variable transmission power,

must be minimized.

5) Optimise handover (HO) zones. In a well-planned

cellular system, a certain proportion of the area of each

cell should overlap with neighboring cells to satisfy HO
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Fig. 1. Layout of the contents and paper contribution: The flow chart explains challenges , opportunities , dependencies and factors in planning future cellular
networks

conditions. HO zones are essential to guarantee continu-

ity of service between the sectors. It also strengthens the

radio link against fast fading and shadowing. However,

too much overlap may result in wastage of power, and

radio resources, and increase in interference and electro-

smog, making it a tricky planning objective.

B. Conflicting Nature of Multiple CP Objectives

Ironically, the CP objectives listed in Section II-A mutually

conflict, hence, giving rise to the immense research on CP in

past two decades. For example, maximizing the coverage and

capacity requires deploying more base stations, which in turn,

increases the network cost. Similarly, coverage maximization

contradicts the objective of reducing power consumption and

electro-smog. Regardless of which technique is adopted to

solve the CP problem, competing multiple objectives need to

be addressed, although this is often done implicitly rather than

explicitly. The main implication of having multiple objectives

is that a set of optimal solutions, rather than a single solution,

is obtained. Although several alternatives to cope with multi-

objectivity have been proposed in the literature, no approach

proves more prevalent [24].
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Fig. 2. Three phases of cellular network planning and optimization.

To cope with more than one CP objective, multi-objective

functions are often defined. Previous CP studies used two

different ways to represent a multi-objective function. One way

is to use a linear combination of different objective criteria to

form a single objective function, where different objectives are

given a certain weight between 0 and 1 [25], [26], [27], [28],

[29].

In the second method, the problem is formulated by a

set of decision variables i.e., parameter space vector and a

set of objective vectors. When there is no solution that can

improve one objective without degrading the other objective, it

is considered as the optimal solution. This solution is referred

to the Pareto optimal solution [30], [31], [29]. The objective

functions of interest can also be assigned weights to reflect

their importance relative to each other. Such weighted multi-

objective functions give more flexibility to the network planner

by assigning higher or lower weight to put more or less

emphasis on a given objective.

C. Cell Planning Inputs

Different inputs are required to solve the cell planning

difficulty depending on objectives in focus and phase of

planning. Usually, the following inputs need to be known [32]:

1) Traffic Models: User traffic distribution is a main factor

that ultimately determines the cellular system plan and,

hence, is a key input in the CP process. In GSM (mono-

service systems), for instance, geographical characteri-

sation of traffic distribution is sufficient. However, with

multi-service systems supporting data, traffic character-

isation based on types and level of service is needed

[33]. Test point based traffic models are often used for

CP traffic modeling, for the sake of practicality [34],

[35], [36], [6]. In this model, an area is characterized

over a time interval and all located mobile terminals are

bundled into a single test point. This point represents

the cumulative traffic, or traffic intensity, from all these

terminals, over the determined interval.

2) Potential Site Locations: Theoretically, a base station

can be installed anywhere. However in the real world,

a set of candidate sites is first pre-determined and used

as input to the CP, to incorporate the real estate con-

straints. The objective, thus, is to find the optimum

subset of BS locations. These potential BS locations are

determined by taking into account the constraints such

as, socio-economic feasibility and availability of site(s),

traffic density, building heights, terrain height(s) and pre-

existence of a site(s) by the same or other operators.

3) BS Model: There are many parameters that define the

BS model such as: antenna type and height, receiver

sensitivity, load capacity, transmit power and capital

and operational costs [37] . Moreover, heterogeneous

networks necessitate modeling of new types of nodes;

for instance relay stations (RS), pico-cells, femto-cells,

and small cells.

4) Propagation Prediction Models/Maps: A key input to

the planning process is the signal propagation model.

The potential of this model is to incorporate reflection,

differentiation, absorption, and propagation of the signal

in real environment. Taking into account the natural and

man-made structures, vegetation and topography of an

area, highly determines the accuracy of the CP out-

comes [38]. Very sophisticated planning tools rely on ac-

tual measurement based propagation maps, or ray tracing

based complex analysis, to predict the propagation [39].

However, obtaining complete propagation maps of a

large area using these methods is a very cumbersome,

time consuming , and expensive process. For this reason,

different empirical models have been proposed in the

literature. Such models abstract the experimental and

statistical data in the form of deterministic expressions,

that can easily be used in the CP. Okumura [40],

Hata [41], and COST 231 [42] are a few examples

of such well known propagation models used in CP

to depict propagation loss in different environments

and scenarios. A fine tuning of these models is done

by setting parameters within these models to reflect

the real-world conditions as closely as possible. While

propagation models for sub 5 GHz frequencies are well

established, research on developing such models for

higher frequencies such as mmWaves is still in progress

[43].

D. Cell Planning Outputs

The goal of the CP process is to provide one or more of

the following outputs:

1) The optimal number of base stations;

2) The best locations to install base stations;

3) The types of base station optimal for each location;

4) The configuration of parameters such as antenna height,

number of sectors and sector orientation, tilt, power;

5) Frequency reuse pattern;

6) Capacity dimensioning, e.g. number of carriers or carrier

components per sector.

E. Types of CP and their Complexity

The objectives, input and output of the CP process also

depend on the type of planning. There are generally two types

of CP, roll out and incremental, as explained below:

1) Roll-out CP: This is the CP where no prior networks

exists and a plain state approach can be used to meet

all the objectives of interest. In terms of input parame-

ters, in this phase the traffic distribution is not exactly

known yet. Estimates of traffic based on geo-marketing

forecasts are used for planning in this phase
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2) Incremental Planning: This type of CP is generally

carried out after the first roll-out planning to meet the in-

creasing demand. Unlike the plane state approach, plan-

ning in this phase is bounded by additional constraints

imposed by existing sites. However, in this phase the

traffic distribution can be modeled now with much better

accuracy using the measurements from existing network

reports [44]. It is anticipated that 5G deployment will

mostly require incremental planning by building on

LTE/UMTS/GSM network.

Both CP types correspond to the second part of Fig. 2, with

incremental planning also touching on the third part (post

deployment optimization).

F. A sample formulation of CP and complexity analysis

For CP , if the main objective is to maximize service area

fairness, maximize capacity and minimize power consumption

in the system. The objective function can be modelled for a

number of constraints. Using the notation defined in Table I,

the problem of holistically planning a cellular network can

now be formulated as multi-objective optimisation problem as

below:

max
Qb,Qr,Hr,Hb,Sb,Ps,Pr,Fs,φs,θ

f(Γ,Υ,Ω) (1)

subject to:

B 6 Bmax

R 6 Rmax

1 6 Sb 6 Sb,max , ∀Sb ∈ Sb

360

Sb

i−kφ,maxδφ 6 φs 6
360

Sb

i+kφ,maxδφ, i = 1, 2, 3...Sb

0 6 θs 6 kθ,maxδθ , ∀θs ∈ θ

hs,min 6 hs 6 hs,max , ∀hs ∈ Hs

hr,min 6 hr 6 hr,max , ∀hr ∈ Hr

ps,min 6 ps 6 ps,max, ∀ps ∈ Ps

pr,min 6 pr 6 pr,max , ∀pr ∈ Pr

The above formulation can help to gauge the unfathomableness

of the solution space of the CP problem. Taking a toy

example of only 56 cell cellular system and focusing on

solving for optimal tilt angle only, assuming a quantization

to ten possible values, a brute force based solution will have

to assess {kθ,max + 1}(
∑

B

b=1
Sb) = 1056 possible solutions.

With a state of the art computer having processing speed of

1012 evaluations per second, finding an optimal solution may

require as long as 10
56

1012×8.6×104×365
seconds, which is clearly

prohibitive. Note that the actual size of the solution space of

a typical holistic planning problem represented by (1) would

be even more gigantic as can be sketched by the expression

below:

TABLE I
SYMBOL DESCRIPTION

Symbol Description

b bth base station

B set of all base stations in systems

B total number of BS i.e. |B| = B

Bmax maximum number of BS that can be afforded.

A Total area of interest

Q set of Q bins that constitute A

q qth bin,
∑Q

i=1
qi = A, & A

Q
= q, ∀q ∈ Q

Qb set of bins in which BS are located, Qb ⊆ Q

S set of all sectors in the systems

S total number of sectors in system i.e. |S| = S

s denotes sth sector

Sb total number of sectors bth BS has

Sb Sb = {S1, S2, S3...SB}, S = |S| =
∑B

b=1
Sb

Sb,max maximum number of sectors a BS can have

hs (antenna) height of sth sector antenna on BS

Hs set of all sector antenna heights

hs,max maximum allowed hs

hs,min minimum allowed hs

δhb
step with which hs can vary

fs fractional frequency reuse factors in sth sector

F set of fs for all sectors.

kf number of different values fs can have

R set of RSs in the system R i.e. |R| = R

r rth RS in the system

Rmax maximum RSs that can be afforded

Qr set of bins in which RS are located, Qr ⊆ Q

Hr set of all RS antenna heights

hr height of rth RS antenna,

δhr
step with which hr can vary

φ vector of azimuth angles of all sectors

φs azimuth angle of sth sector

θ set of tilt angles of all sectors

θs tilt angle of sth sector

δφ, δθ steps sizes for azimuth and tilts change

kθ,max maximum steps of tilt change

kφ,max maximum steps of azimuth change

Ps set of transmission powers of all sectors

ps transmission power from sth sector

δps step with which ps can vary

ps,max maximum allowed value of ps
ps,min minimum allowed value of ps
Pr set of transmission powers of all RS

pr transmission power from rth RS

δpr step with which pr can vary

pr,max maximum allowed value of pr
pr,min minimum allowed value of pr
Gs

q gain from the sth sector antenna to qth bin.

α path loss co-efficient

β pathloss exponent

ϕv vertical beamwidth of the antenna

ϕs
h

horizontal beamwidth of sth sector antenna

Υ capacity wise performance indicator

Ω total power consumption in the system

Γ service area fairness wise key performance indicator (KPI)

X\y means all elements of X except y.
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Q!

B!(Q−B)!
×

(Q−B)!

R!(Q−B −R)!
×

{

hs
b,max − hs

b,min

δh
+ 1

}(
∑

B

b=1
Sb)

× (Smax)
B
×

{

hr,max − hr,min

δh
+ 1

}R

×

{

psb,max − psb,min

δp
+ 1

}(
∑

B

b=1
Sb)

×

{

pr,max − pr,min

δh
+ 1

}R

× k
(
∑

B

b=1
Sb)

f × {kφ,max × 2 + 1}(
∑

B

b=1
Sb)

× {kθ,max + 1}(
∑

B

b=1
Sb) (2)

By the preponderance of (2) it is clear that a brute force

solution is theoretically not possible in reasonable computing

time. Since there is no known polynomial time efficient algo-

rithm in the literature for this or similar problem, CP problem

has been shown to be NP-hard a number of times [45], [46],

[47], [48]. Appreciation of the complexity of cell planning

problem through this analysis should help better understand

rationale behind solution approaches taken in various works

in the literature.

G. Coping with NP-hard CP Problems in Practice

When considering the CP problems that belong to the

class of NP-hard combinatorial problems, the most common

approaches that have been used in literature can be classified

into the following:

• Easy special cases. In this approach, the problem is

not solved in its full generality. Rather properties of the

input instances are identified and exploited that make

the problem easier and mathematically tractable, and

then an algorithm is designed that makes use of these

properties. Although the advantages of this approach such

as robustness and transparency are strongly advocated in

[49], [50], it largely remains an under explored territory

in CP domain. Recent examples of use of this approach

can be found in [51], [52].

• Somewhat efficient exponential algorithms. Here an

algorithm is designed that always solves the problem with

running time not polynomial, but still much faster than

exhaustive search. This approach may be useful for inputs

of moderate size. Examples for use of this approach can

be found in [53], [26], [54].

• Approximation algorithms. In this approach the quality

of solution is sacrificed to obtain more efficient algo-

rithms. Instead of finding the optimal solution, the algo-

rithm settles for a near optimal solution with advantage

of making the problem easier. Examples of use of such

approach can be found in [55], [56], [57].

• Heuristics In this approach heuristics are used to design

algorithms that work well on many instances, though

not on all instances. This is perhaps the approach

most commonly used in practice [58] and heuristics

such as simulated annealing [15], [59], genetic algo-

rithms [47], [60], [61], [62], particle swarm [48], [63],

Taguchi’s method [64], bee colony optimisation [65],

tabu-search [66] or k-mean algorithm [67] have been

applied to obtain near optimal solutions for various CP

problems. A detailed discussion of use of evolutionary

heuristic for planning problems can be found in [61].

• Hybrid approach A number of hybrid approaches that

combine analytical and heuristic techniques or combine

more than one heuristic in cascaded stages to solve the

NP-hard planning problems have also been proposed in

the literature [68]. For example, authors in [69] present

a hybrid approach consisting of three stages. In the first

stage, a good feasible solution to the problem is found

by using constraint satisfaction technique embedded with

a problem-specific search guidance. The second stage is

to apply a good local search procedure to improve this

solution. The third stage is to make a further improvement

to the solution derived from the second stage. The best

objective function value obtained from the second stage

is used as the upper bound, then a constraint optimization

technique is applied to improve the solution. Numerical

results show that optimal solutions are always obtained

for small to medium sized problems. For larger sized

problems, the final results are on average within 6 -

7 percent of the lower bounds. Such hybrid approach

can be an efficient tool for tackling a wide range of

combinatorial NP-hard problems.

III. RECAP OF THE PRIOR STUDIES ON CP

The objective of this article is not to provide a com-

prehensive survey the past of CP but characterize the

future of CP by building on insights from past and

present. Therefore, instead of providing a detailed review

of past literature on planning, in Table II, we concisely

summarize the representative research works on CP that

have been carried out in time between the dawn of 3rd

generation cellular system (UMTS) and the emergence of

a 4th generation cellular system (LTE). In addition to the

detailed classification labels given in columns of Table

II, these works can broadly be classified into

– Classic CP

– Holistic CP

The Classic CP was mainly concerned with optimising

the number and location of base stations. As we can see

in Fig. 5 , in the previous technologies there were no

new features added. With the widespread deployment of

2G and 3G cellular networks, explosive traffic demand,

and invasive data services, the classic planning could no

longer serve the objectives of CP. In order to cater to

multiple objectives, such as coverage, capacity, QoS, cost

of network and energy consumption, many parameters

needed to be considered in the CP, which motivated the

development of holistic CP.

In the Table II, we have also summarized the holistic

CP parameters whose optimization have been addressed
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TABLE II
PARAMETERS ADDRESSED IN THE CP LITERATURE
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[6], [70], [71] X X X X

[72], [73], [71] X X X X X X X X X

[10], [74] X X X X X X

[75] X X X X X X X X X

[76] X X X X X

[66], [77] X ± X ± X ±
[8], [47] X X X X

[60] X X X

[70] X X X

[49], [36] X X X X

[68], [78] X X

[79] X X X X X

[80] X X X X X

[81] X X X X X X

[82] X X X X X X X X

[83] X X ± ± ±
[84] X ± ± ± X

[85] X X ± ± ±
[16] X X X

[61] X X X X X X X X X

[86] X X X

[87] X X X X X

[88], [89] X X X X

and researched in CP literature. The table provides a

taxonomy of the works done in terms of BS location, fre-

quency, budget, interference, transmission power, height,

heterogeneous traffic, number of sectors, antennas, tilt

planning, traffic uncertainties, and analytical models etc.

IV. RECENT TRENDS IN PLANNING FUTURE

NETWORKS

In this section, we review the literature on recent trends

in CP that include considerations for energy efficiency,

uncertainty in traffic, and CoMP.

A. Energy Focused Planning: Green Planning

In recent years improving energy efficiency in cellular

operation has become an integral part of CP, partly to

reduce carbon footprint and partly to reduce OPEX. Fur-

thermore, as the cellular networks are becoming denser

and revenues per bit are decreasing, the need for energy

efficient cellular systems is growing more than ever. In the

following we review several mechanisms to incorporate

energy efficiency in to the CP process that have been

proposed in literature.

1) Energy Savings through optimal BS positioning:

Authors in [80] tackle the basic BS location problem and

assignment of mobile users to appropriate BSs in 3G W-

CDMA uplink environment. The authors propose a con-

straint satisfaction model and apply different techniques

like variable ordering and value ordering to find good

optimal solutions. Instead of cost minimization, the ob-

jective of their model is to minimize the total transmitted

power. Once the location and power configuration of BSs

are known, the next step is to study BS assignment to the

higher level. This involves the investigation of an access

network sub problem. It is shown that local approaches,

that aim at reducing the energy consumption of individual

network components, can be quite effective. However,

global approaches, that consider the entire network en-

ergy consumption in the network design, planning, and

management phases are a must, for a holistic approach

to energy efficient networking.

Compared to previous works on energy savings via BS

switching, in [90], [91] the authors investigate the domi-

nating factors in the energy savings. Energy consumption

of the BS amounts to nearly 850W, with the energy

needed to transmit from the antennas amounting only up

to 40W and the rest expended even in case of idle opera-

tion. Their analysis shows that the mean and variance of

traffic profile and the BS density are the dominant factors

that determine the amount of achievable energy saving.

Moreover, an expression is obtained that indicates that the

energy saving increases when the traffic, mean/variance

ratio and the number of neighboring BS have higher

value. It means, for instance, that the greatest energy

savings are likely to be realized in urban commercial

areas (since such an area is likely to show both high

traffic variance between day time and night time as well
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as high BS density). It is also emphasized that, the slope

of traffic variation is more important than the maximum

value in estimating the traffic profile because the slope

directly determines the switching-on/off time.

In [92] authors investigate techniques to optimize the

number of base stations and their locations for energy

efficiency. The key contribution of this work is that

it takes into account the nonuniform user distribution.

Authors make use of a stochastic programming approach

using mixed integer programming to model and solve the

base station location problem from a BS power efficiency

perspective. It is claimed a power reduction of at least

96% is possible with the proposed solution. However, the

proposed techniques assume full knowledge of channel

state information (CSI) at BS while neglecting effect of

small scale fading and shadowing.

2) Energy Savings through BS with proportional energy

Model: In [93] authors provide an analytical estimation

of the energy savings that can be achieved for two BS

models: a) On-Off BS energy model (current BS are

more of this type) b) Proportional energy model where

energy consumed is proportional to load in the cell.

They use a QoS metric of delay, which is defined as

inverse of throughput, which is further defined as an

abstract function of distance from BS only, for analytical

tractability. With this model, they present expressions

for expected delay and variance of delay for given BS

and user densities. These expressions are then used to

analyze the BS densities and, hence, energy consumption

for a given user density and QoS constraints. They also

formally show the fact that lowest BS density for a given

user density is possible with circular cells (as circle has

largest area and thus largest number of users for a given

distance allowed form the center of shape i.e. BS). The

proof actually yields lower bound on the BS densities for

any allowed topology of BSs (grid, hexagon, Poisson).

The key inferences obtained are: 1) Poisson topology

is less energy efficient than the regular topologies due

to irregularly large distances from BS; 2) on/off model

allows much more energy savings than the proportional

model, advocating the use of system level techniques

(compared to transmission power focused physical layer

techniques that try to reduce variable energy consump-

tions on individual BSs). With proportional energy model

(i.e. futuristic and unrealistic at the moment) the optimal

energy saving model is not the one with lowest BS

density. This advocates low power large number of small

cells.

3) Energy savings by switching ON/OFF BS: In [94],

the authors present a methodology to calculate the en-

ergy savings by switching off BSs. They model energy

consumption as a linear function of the number of BSs.

Then, using the traffic profile for 24 hours, it is argued

that as the traffic decreased by a factor X, a fraction

X of the BSs can be shut down, and consequently,

energy consumption will also be reduced by a factor X.

Next, they remove the assumption that any BS can be

shut down, and suggest that, in specific topologies, only

certain BSs can be shut down to avoid coverage holes

(e.g. in hexagon, six out of seven or three out of four

BSs can be shut down). Similarly, authors identify the

number of BSs for crossroad (urban street scenario with

each cell having four neighbors) and Manhattan lay out.

Note that the paper assumes omni directional antennas

appointed in center of the cells and does not quantify the

loss of coverage, capacity or takes into account the local

user demands when shutting down BSs.

Authors in [95], [94], [93] present a scheme for energy

management of base stations according to the network

traffic that incorporates binary on/off activation or con-

tinuous cell zooming capabilities at the BSs. It is shown

that noticeable energy savings can be achieved for low

network traffic.

The authors in [96] present energy efficiency metrics

and investigate the performance of different planning

strategies of LTE networks in an empirical way. In [97],

the authors propose to incorporate the on/off switching

of BSs in the planning process itself. They first present

a heuristic to have a minimum number of BSs. In this

algorithm, first a Verona tessellation is established, then

BSs are classified in feasible and infeasible set. A feasible

set consists of BSs whose removal will not decrease the

coverage below the threshold. This step is repeated until

no BS can be removed without decreasing the coverage.

To incorporate on/off switching, first the network is

planned for the lowest traffic (this defines the infeasible

set that cannot be switched off) and then it is planned for

highest load. Turning on additional BS and finding their

locations is done by repeating the same algorithm.

In [98], the authors use a detailed energy consumption

model of the BS and definitions of site load factor to

predict how much energy will be consumed to provide

target capacity demands (100 Mbps in the paper). They

take the energy consumption and capacity of existing

HSPA+ in Finland (2008) as reference and compare it

with that of LTE while considering the gains obtained in

LTE by node level (energy/capacity) efficiency as well as

by network level deployment strategies.

4) Energy saving though cell size adaptation: In [99]

authors present an analytical framework coupled with

a simple mathematical traffic model, to investigate the

potential energy savings that can be achieved by adap-

tively adjusting the cell size according to the spatial

traffic variation. The key idea is that, instead of having

the same cell size throughout, areas with low traffic

density can have larger cells compared to areas with

high traffic density, resulting in energy and cost savings.

The cell radius is calculated such that the cell includes

maximum number of users while maintaining a threshold

blocking probability resulting from underlying M/M/N/0

queuing model of traffic and geographically varying user

density. The results show that energy savings increase

as cell density decreases until a certain point, where

the large transmission power overcomes the fixed power

consumptions, and the energy savings start to diminish,

reaching negative values. This work does not incorporate
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Fig. 3. Green planning with BS on/off switching: proactive versus reactive
approach.

impact of interference, frequency reuse and sectorization

on coverage.

In [56] the same authors present a modification of their

work in [99] again for energy savings in LTE. Here

instead of adapting the cell sizes in order to cope with

spatial traffic variation, they propose dynamically adapt-

ing the number of sectors per site (three to two sectors

per site) to cope with temporal variation of the sectors.

They argue that though adaptive sectorization has been

previously used for CDMA systems, it suffered from

two short comings: 1) QoS constraints are not taken into

consideration which makes the user terminals suffer from

high blocking probability and low coverage once some

sectors are off; 2) the transmission power of the BSs

is assumed to be adjustable in a large dynamic range

which is normally impractical in real systems because of

the power amplifier and RF link. In order to overcome

this shortcoming they suggest to increase the beam width

and change the azimuth of two remaining sectors when

the third is shut down in low traffic times. The QoS

and power constraints are satisfied while saving 21%

energy per BS using EARTHs measurement based power

consumption model of the BS. Instead of full buffer

traffic model, they use event triggered traffic model that is

based on the continuous time Markov process. However,

the results presented seem to be independent of the

underlying traffic model.

5) Energy saving through Network Infrastructure shar-

ing : In [100], the authors exploit the observation that

metropolitan areas are normally served by a few com-

peting cellular network operators, providing 24/7 full

coverage, each dimensioning its network according to

peak traffic, but providing redundant resources when

traffic is low. So provided that operators are willing to

accept the competitors subscribers as roaming customers,

some energy can be saved. For the case of just two

operators, the authors show that 20% or more energy can

be saved, though the exact saving will depend on lot of

parameters including operator policies, that remain to be

investigated.

6) Energy Savings through Proactive Approach: The pre-

viously proposed approaches for switching BSs on and

off are reactive, i.e., the network plan and BS sites are

fixed and then reactive measures are implemented to

decide which sites to switch on/off and which sites to

reconfigure as network conditions change. To increase

energy efficiency, an alternative approach would be to

perform network planning as a function of the traffic load

over large-scale time durations (hours and days) instead

of planning only based on peak hour worst case traffic

conditions. The process would then start by performing

network planning based on the low traffic load conditions;

this will give the set of BSs that need to be switched on

at all times (during both high and low load conditions).

The next step would be to perform network planning

based on the higher traffic load conditions but with the

sites obtained in the previous step fixed. The aim is

to determine how many new sites to add and where

to place them in order to support the increase in load;

these are the sites to be additionally switched on in high

load conditions. This approach, summarized in Fig. 3 is

generic enough to account for any number of traffic load

states depending on the large-scale traffic variations in

the area of interest.

A proactive approach proposing a modeling and optimi-

sation framework for the planning of energy-aware wire-

less networks is introduced in [101]. The key idea is

that energy awareness should be introduced at the plan-

ning stage in order to reach energy-efficient network

operation. The authors formulate a joint planning and

energy management problem, that aims to minimize a

utility comprising a weighted sum of CAPEX and OPEX,

including power consumption costs. By solving a binary

linear program, the authors optimize BS positions, types,

and configurations.

B. Planning with Traffic Uncertainty Considerations

Due to heavy traffic fluctuation over time cellular net-

works, operators often use peak hour traffic volume

during network planning in order to avoid capacity bot-

tlenecks [102]. A more efficient approach would be

to consider the design of cellular networks under traffic

uncertainty. For example, in [103] the authors suggest that

better radio resource usage is possible by incorporating

the time-varying traffic in the planning. They demonstrate

that the user mobility can be similarly converted to the

multi-period optimization problem. To this end, they for-

mulate a simple one dimensional cell planning problem

and demonstrate how it can be converted into a binary

linear programming problem to look for the optimal

solution. An overview of the most important techniques

dealing with traffic uncertainty is presented in [104]. The

literature that provides solutions for planning with traffic

uncertainty can be divided in two categories discussed

below.

1) Multi-Period Network Design: In multi-period (multi-

hour) network design [105], an explicit set of demand

matrices is given, and the network is designed in such

a way that each of the demand matrices can be routed

non-simultaneously within the installed capacities. In



10

this context, authors in [106] introduce the concept of

dominating demand matrices (i.e., D1 dominates D2 if

every link capacity vector supporting D1 also supports

D2). Instead of describing demand matrices explicitly,

the authors in [107] consider the optimized routing of

demands that may vary within a given prototype. For

network design problems, this concept has mainly been

applied using the hose model, a polyhedral demand

uncertainty set which has been introduced in the context

of virtual private networks (VPNs) [108]. More details

and a good overview about methods to deal with network

design under uncertainty are presented in [102], where

robust optimization is advocated as a possible solution.

2) Robust Optimization: Robust optimization was first

considered by Soyster [109], and it aims at finding

solutions that are feasible for all realizations of data in a

given (bounded) uncertainty set. In robust optimisation a

parameter Γ is used to control the price of robustness,

the trade-off between the degree of uncertainty taken

into account and the cost of this additional feature [110].

In [111] authors apply robust optimization to deal with

demand uncertainty in cellular networks. Their robust

optimization model offers for operators a trade- off

between robustness and energy consumption by varying

the robustness parameter. The complexity of problem

is reduced by applying cutting planes. A case study

is performed to compare the robust formulation to its

deterministic counterpart and to conventional network

planning. It is observed that energy savings are possible

either by deploying less BSs or serving more users with

the same number of BSs using the proposed robust

optimization approach.

C. Planning with CoMP

In conventional CP, the BS coverage areas are controlled

to minimize coverage overlap. However, when the BSs

can coordinate to dynamically reduce interfere or bal-

ance loads, as in CoMP, standardised for LTE-Advanced

(Release 11) and beyond, signal coverage overlap can

be tolerated or even becomes desired. Thus, planning

with CoMP becomes a very different problem compared

to traditional planning discussed in previous sections,

triggering some dedicated studies in recent years.

In [112] authors investigate the impact of coordinated

multipoint (CoMP) transmission on cell planning pa-

rameters such as coverage, traffic, handover, and cost.

To assess achievable coverage and capacities with and

without CoMP, authors propose and use two ratios: Local

to-uncooperative- plus-noise ratio (LUNR) and the local

to-cooperative-ratio (LCR). Simulation results show that

CoMP maximizes its gains over noncooperation (NC) in

a network. However, NC may produce higher throughput

in certain scenarios. Therefore, to avoid low system wide

average throughput with CoMP, authors recommend a

dynamic or semi-static switching between CoMP and NC

called fractional base station cooperation. It is highlighted

that because of interference from non- cooperating BSs,

the gains of CoMP over NC are upper bounded and

diminish at greater inter site distances due to noise. This

encourages smaller cell sizes, higher transmit powers,

and dynamic clustering of cooperative BSs. Cell planning

with CoMP may require additional steps e.g. determina-

tion of cooperative and non-cooperative regions, LCR,

and LUNR thresholds. Findings also show that gains of

CoMP remain moderate, hence the complexity and cost

incurred by CoMP should also remain moderate. The

key limitation of this work is that each BS is assumed

to be incapacitated. Therefore, user throughput solely

determines the selection of the BS cluster in dynamic

clustering, and load balancing remains an unexplored

aspect.

In [113], the authors compare the energy saving potential

of relay station (RS) and CoMP with single BS sce-

nario while maintaining an average outage constraint.

The impact of the traffic intensity and BS density are

also investigated. Results show that traffic intensity can

be divided into three classes: coverage-limited region,

energy-efficient region, and capacity-limited region. The

interesting finding is, as BS density goes higher, the

energy-efficient region becomes larger, and the traffic

load region where the cooperation schemes bring benefits

becomes smaller. Furthermore, it is observed that RSs

energy cost needs to be designed as low as possible to

get high performance, otherwise BS cooperation would be

more favorable. The analytical models developed provide

useful insights for green planning with CoMP

In [114], the authors extend their work in [113] for

BS location and number planning taking into account

CoMP, thus making the process of network planning more

energy- aware. The optimal network planning problem is

formulated as a mixed integer programming problem and

an approximate solution is proposed using Lagrangian

relaxation. Numerical results show that the overall energy

consumption is decreased by over 20% compared with

no cooperation while the system QoS is guaranteed. It

is also observed that the low network density and traffic

distribution asymmetry lead to higher energy efficiency

gain.

V. NEW MODELING TOOLS FOR PLANNING FUTURE

NETWORKS

In wake of new requirements and technologies discussed

in previous section that are a becoming vital part of the

CP paradigm, planning future networks call for corre-

sponding evolution in modelling tools. In this section,

we provide a brief overview of recent developments in

models that have been proposed in literature to cope with

new requirements in CP paradigm

A. Modeling dynamic channel variations in CP

In [115], the authors argue that conventional planning

techniques rely on static propagation and interference

models, which, although they take geographic informa-

tion into account, they overlook the dynamic channel
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Fig. 4. Typical phases of cellular network planning and parameters taken into consideration in each phase

variations. To bridge the gap between static and dynamic

planning the authors established a simple relationship

that relates the static SIR to its dynamic counterpart

by a factor, which represents the influence of a fading

environment. They use this new relation to study several

aspects of a cellular system that reveal the physical

implication of the static SIR in a dynamic operational

environment. They also provide a simple method for

evaluating the average outage probability. Finally, they

determine the relationship between the conflicting re-

quirements on the system capacity and on the minimum

outage performance.

B. Modeling Multi-Carrier systems in CP

In [116], the authors argue that classic interference mod-

els used in CP have been limited to single carrier systems

and present an analytical method to assess effective

SINR in multi- carrier systems operating over frequency

selective channels. This extension of single carrier is

achieved by expressing the link outage probability in

terms of the statistics of the effective SINR. Two approx-

imations for the link outage probability are obtained by

considering Log-Normal and Gaussian assumptions for

the derivation of the statistics of the exponential effective

SINR. The SINR statistics are used to further assess the

outage probability and thus obtain a simplified planning

procedure for two cells interference scenario.

C. Modeling Cell Load in CP

In [117], the authors introduced a method to analyti-

cally approximate cell load levels while planning OFDM

networks by building on corresponding ideas in UMTS

networks, namely load scaling and continuous traffic

distributions. The idealized power control equations for

UMTS are replaced by affine linear approximations of

the adaptive modulation and coding (AMC) mechanism

for OFDM which results in a different structure of the

equations. They proposed a simple iteration for solving

the equations numerically. The approach avoids time

consuming snapshot simulations. The model is useful

for automatic network planning and optimization as fast

analytical capacity evaluation can build the foundation

for various local search algorithms for improving network

designs.

The authors in [118], extend their work in [119] and

present a mathematical analysis of fundamental proper-

ties of the load coupling among cells for LTE system.

They also develop and prove a sufficient and neces-

sary condition for the solutions existence. Theoretical

results for numerically approaching the solution or de-

livering a bounding interval are also presented. Finally,

the application of the proposed system model for plan-

ning LTE network is presented. The analysis in [118]

has been supported by theoretical proofs and numerical

experiments and can serve as a basis for developing

radio network planning and optimization strategies for

LTE. Furthermore, the presented linearization and the
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bounding based optimization can potentially be used for

more general convex optimization problems with similar

properties. However, the analysis does not take into

account interference dynamics specific to the LTE. In the

SINR model of [118], interference is considered from

all cells weighted with the load in those cells only. In

other words if two interfering cells A and B are loaded

50% and 20%, the interference from these cells will be

scaled by 0.5 and 0.2 when being received by the cell

under consideration. This is more like CDMA where

interference is independent of frequency reuse. In LTE

presence of sub carrier allocation and scheduling means

both cell A and B can still be interfering as long as

weight is greater than zero depending on if that particular

sub carrier is being reused or not. Furthermore, use of

fractional frequency reuse adds another dimension to the

interference modeling in LTE that is not considered in

this paper.

D. Modelling BS location Randomness in CP

In [51], the authors argue that, although the problem of

BS placement has been addressed with standard Voronoi

partitioning, the standard Voronoi partition cannot be

used in a scenario where the BSs have heterogeneous

and anisotropic characteristics (directional antennas) or

where geographical terrain is not planar two-dimensional.

Therefore they suggest to use a generalization of the

standard Voronoi partition replacing the usual distance

measure with the concept of an abstract general function

(named node function in the paper) associated with each

site. The optimisation objective is formulated as a product

of the node function with user density, integrated over

the generalised Voronoi tessellation of each BS and then

summed over all BSs. It is concluded that the solution

will be to place each BS at the centroid of general

tessellations (for which an abstract formula is given). But

it is not clear from the paper whether the BS location or

its corresponding tessellation will be decided first.

In [120] authors address BS location problem with a sin-

gle objective of minimizing outage (evaluated by Monte

Carlo simulations). Their case study assumes HSDPA

system with pre-presence of fixed number of micro sites.

For performance evaluation they make use of a planning

tool and Monte Carlo method using real network data that

includes: 3-D geolocations of the base stations, digital

elevation map and digital clutter map data, antenna char-

acteristics (pattern, tilt, and cable losses), total transmit

power levels and spatial broadband traffic.

The proposed algorithm to address the problem, named

SMART, consists of three simple steps.Greedy, Simulated

Annealing (SA), Greedy with memory (Greedy Mem),

and Simulated Annealing with memory (SAMem). It is

shown that simulated Annealing and Greedy algorithms

achieve almost the same optimal deployment when the

number of optimization iterations is large and, the greedy

algorithm converges much faster than simulated annealing

algorithm when the number of optimization iterations is

small. It is also shown that in practical network deploy-

ment scenario SMART outperforms previously proposed

meta heuristics such as Deployment Formula Metric

(DFM) based schemes proposed in [121] and [102].

E. Modeling Intercell Interference

In [122], intercell interference modeling is performed in

the uplink, while taking user scheduling into account.

Scenarios with round robin, proportional fair, and max-

imum SINR are considered in the presence of various

fading types. The obtained semi-analytical expressions

are used to evaluate network performance metrics such

as the outage probability, ergodic capacity, and average

fairness numerically. The derived model can be useful

as an input for radio network planning algorithms, in

order to take inter-cell interference into account with user

scheduling during the planning process

Modeling intercell interference in the presence of up-

link power control is investigated by the same authors

in [123]. Fading is also incorporated in the models,

along with basic scheduling assumptions. The expressions

derived in [123] are then utilized to quantify numerically

certain network performance metrics including average

resource fairness, average reduction in power consump-

tion, and ergodic capacity. Although the models of [122]

and [123] are derived for the uplink, indications on their

downlink extensions are described. Main limitation of

these models stems from considering a single subcarrier.

Generalization to the scenario of multiple OFDMA sub-

carriers with dynamic subcarrier allocation (as in the case

of LTE scheduling) is a daunting task.

F. Total Cost of Ownership Models

1) Net Present Value (NPV): In [124], authors use a

planning tool to compare the performance of several

algorithms, using the optimization objective of NPV. NPV

takes into account expected revenues, CAPEX and OPEX

(of BS as well as sectors) over a period of 6 years.

Optimization is done in terms of BS locations, their

numbers (out of a set of locations), and the number

of sectors per BS. These results show the Tabu search

performs well compared to other approaches though at

the expense of additional execution time

2) Cost Analysis of BS and Relay Station (RS) : In [125]

authors do a cost analysis of joint BS and RS deployment

in the context of LTE (they assume 2x2 MIMO). To this

end, they use simple linear cost model that is sum of

BS and RS densities weighted with their relative cost

factors. Then via simulations they derive the curves for

iso-capacities while varying BS and RS densities (per

square kilometer). Hence, an increase in RS or BS density

increases capacity in general, so by varying their densities

reciprocally, the same capacities can be obtained. All

such combinations of RS-BS densities that achieve same

capacity (area spectral efficiency) make an iso-capacity

curve. Then for a given iso-curve the point where the

linear cost model defined earlier, is tangent to it, yields



13

Fig. 5. Brief history and time line of cellular technology generations. Different service offerings which became available in each generation are listed

the least cost deployment for achieving that capacity. For

this kind of static deployment, the optimal number of RSs

is reported between 7 and 11. As after certain RS density,

further increase in RS density can decrease the capacity

(the same capacity cannot be maintained), therefore, iso-

capacity curves also provide and upper bound on the RS

density. Authors also analyze the impact of back haul

distance on capacity-cost trade off of RS. They evaluate

cost efficiency against number of RS per cell for various

backhaul distances. Cost efficiency function proposed in

[126] is used for this objective that is proportional to

spectral efficiency (that is indirectly function of distance)

and inversely proportional to the RS costs. The authors

further investigate the impact of progressive deployment

of RS. That is, unlike previous case where all RS are as-

sumed to be deployed at once, authors assume RS might

be deployed gradually e.g., one each year. To evaluate

this scenario authors, use measure called ACSI (Average

Customer Satisfaction Index, a term from economy), that

quantifies user satisfaction after an upgrade relative to

previous network construction. Results suggest that in

terms of user satisfaction four relays are optimal.

In [127], the authors carry out cost/revenue analysis of

WiMAX in presence of relays where revenue generated is

modeled as function of capacity produced. They analyse

the impact of location of RS, frequency reuse topologies

and number of sectors on the cost/revenue optimization

results show that trisector-ed BSs in topologies with

relays enable the operators to achieve more profitable

reuse configurations than with omnidirectional BSs and

no relays. In [125], the authors investigate the possible

energy gains of evolving a mobile network through a

joint pico deployment and macro upgrade solution over

a period of eight years. Besides the network energy

consumption, energy efficiency in Mbps/kW is also an-

alyzed. Outcomes of cost analysis in terms of total cost

of ownership are shown for different deployment options

considered. Using previous year of the evolution analysis,

it is shown that deploying more pico sites reduces the

energy consumption of the network, by a maximum of

30 percent. With regards to the energy efficiency, high

deployment of pico sites allowed the network to carry 16

percent more traffic for the same amount of energy. This,

however, results in an increase in operational costs.

VI. KEY CHALLENGES IN PLANING EMERGING

HETEROGENEOUS AND ULTRA DENSE NETWORKS

In addition to the challenges and constraints already

identified in section II and III in the context of classic

and holistic cellular planning, modern day CP faces new

challenges that stem from heterogeneity of the network,

or more specifically advent of small cells. In this section,

we discuss the challenges that are acting as Achilles heel

for small cells and HetNets planning.

A. UL and DL symmetry

A peculiar feature of HetNets CP is pronounced uplink

downlink asymmetry [128] that is generally neglected in

most academic research studies on HetNets. Although

this asymmetry exists in microcells only networks as

well, the difference between uplink and downlink is

potentially much larger in a HetNets. The reason for

this pronounced asymmetry in HetNets is as follows:
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In the downlink, transmit power disparities of 20dB+

exist between macrocells and small cells while this is not

true for the uplink case wherein all transmitting UEs are

roughly equal in terms of transmission power. In other

words, in uplink direction, a small cell and a macro-

cell appear to be same for transmitting UE. Therefore,

from UEs perspective, for the downlink, macrocells have

very large coverage areas as compared to small cells

while in uplink, coverage areas are roughly equal. As

a result, cell association based on maximum received

signal strength (Max-RSS) strategy may yield different

optimal cells for uplink and downlink e.g., UEs that are

connected to macrocell due to better downlink reception

would likely be better off by associating with near-by

small cells in the uplink. Not allowing this asymmetric

association might lead to sub-optimal performance. On

the other hand, allowing independent traffic sources in

each direction raises new challenges for the core network

and also for the UEs QoS e.g., cell edge UE may have

poor SINR in one direction but not in the other. This

different cell association in uplink/downlink will result in

different interference models and resulting SINRs in the

two links e.g., UEs sharing same BS will be orthogonal

to one another on the downlink while they may interfere

with each other on the uplink if they are transmitting

to different base stations. This calls for new two-way

channel models to be investigated and incorporated in the

CP as the channel gains and SINR in the two directions

may be almost uncorrelated especially if they are routed

from different base stations.

B. Backhaul

Ultra-dense deployment of small cells will create addi-

tional challenges for the transport of backhaul traffic. Cur-

rent [129] research studies on HetNets utilize small num-

ber of small cells to improve SINR of wireless links in

limited hotspot areas wherein a relatively small backhaul

traffic originating from small cells can be forwarded into

the core network through conventional backhaul links of

cellular networks. These studies [129] focus on gains of

the wireless front haul and neglect any possible backhaul

bottlenecks. This assumption is generally correct for well-

planned conventional macrocell only cellular networks.

But this assumption breaks down for HetNets where small

cells are ultra-densely deployed, as in such deployments it

may become a key problem to forward massive traffic into

the core network through existing backhauls. It is now

believed that the full benefits of dense HetNets can be

realized only if they are supported by the careful backhaul

planning [130].

Femtocells deployed in homes by the subscribers gen-

erally utilize digital subscriber line (DSL) broadband

connection for the backhaul that can quickly become

bottleneck particularly in the Uplink [128]. IP traffic

through traditional internet service providers (ISPs) is

used to connect the femtocells with the core network.

This demands high QoS requirements from broadband

connections. Several things need to be considered like

whether the broadband support QoS or traffic prioritiza-

tion or is the connection throttled or traffic-shaped by

ISP. The probable high latency in broadband backhaul

can pose serious problems in coordination of resource

allocation or handoffs information with other cells. Uti-

lizing untrusted IP network for backhaul poses serious

security issues as well. Macrocells enjoy commercial

grade security which is absent in small cells as they are in

direct reach of the subscribers. As a result, small cells and

public IP networks can be utilized to launch distributed

attack on cellular network. Security planning challenges

become another challenge for these unplanned networks.

C. CP for HetNets with Energy Efficiency Constraints

Energy Efficiency (EE) is emerging as one of the main

challenges in rolling out HetNets. In this section we

describe what makes EE a key constraint to be considered

while planning HetNet deployments.

1) Planning for EE from Network perspective: First

factor that makes EE more significant in HetNet planning

compared to old macro cell only network planning is

the sheer increase in number of cells. A large portion

of the energy dissipated in a cellular system is actually

consumed at the base stations (BSs) [131]. Although the

small cells have a relatively lower power consumption

profile, ultra-dense deployment can lead to high aggre-

gated energy consumption. From EE perspective, small

cells are beneficial only when they are deployed in ideal

locations where data requirements are high or macro

cell performance is low [132]. On the contrary, small

cells in control of subscribers like femtocells may not be

beneficial in terms of aggregate EE as these small cells

are operational at all times of the day. Even in the absence

of users in their coverage, a substantial amount of circuit

energy is drawn by these nodes. Therefore, switching

certain base stations off in light traffic conditions, is an

efficient technique to save energy in wireless networks

[131]. However, to implement such technique CP has to

be carried out in way that switching off those certain

cells does not create coverage holes. Another alternative

is to put certain base stations into the sleep (dormant)

mode. However, such dormant cells need to be preemp-

tively activated when user devices are moving into their

coverage and new capacity is needed. For this to happen,

the network must be able to wake the dormant small

cell before handing over traffic to the dormant cell. This

requires CP such that all sleep enabled cells have some

sort of fast signaling connectivity with neighboring cells

either on front haul or back haul.

One simpler approach is shutting down almost all the

modules of a small cell based on a fixed timer configured

based on statistical traffic cycle [132]. However, imple-

mentation of such scheme requires carrying out what

is called multi-modal CP which in addition to spatial

variation in traffic has to consider temporal variation

in traffic. This kind of CP is even more challenging
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and has yet to be investigated. Another newly conceived

constraint related to EE is CP where cell sites rely on

renewable energy source. In this type of planning in

addition to spatio temporal variation of traffic, spatio

temporal availability of the renewable energy source has

to be taken into account in the CP optimization problem

[133].

2) Planning for EE from UE Perspective: From UEs

perspective, energy consumption becomes an issue in

ultra-dense deployment especially if small cells utilize

separate frequency bands/RAT. UEs must periodically

scan for nearby small cells for traffic offloading oppor-

tunity that can result in significant energy consumption

for the UE. Therefore, energy efficient discovery of small

cells becomes a problem in carrier frequency separated

deployment and a balanced inter-frequency small cell

discovery (ISCD) interval needs to be optimized. On one

hand, low ISCD periodicity (i.e. high scanning frequency)

can result in increased small cell offloading opportunity,

thus enhancing the capacity and coverage. However, this

can also lead to higher UE power consumption due to

the high scanning frequency and lower transmit power of

small cells. On the other hand, high ISCD periodicity (i.e.

low scanning frequency) can lead to the UE missing small

cell off-loading opportunity, thus resulting in a potential

decrease in capacity.

In a recent study on ISCD [134], it has been shown that

for given cell density and UE mobility there exists an

optimal ISCD frequency in terms of EE. As UE battery

life is already a bottle neck in era of smart phones, this

finding needs to be incorporated in CP for HetNets to

determine optimal cell densities, not only from capacity

perspective but EE perspective.

CP for emerging HetNets, need to take all of the afore-

mentioned EE constraints into account, which make it

a drastically different problem compared to the ones

studied extensively in literature for macro cell planning

with focus on coverage and capacity only.

D. CP with Deployment location Constraints in HetNets

1) BS placement Optimization in HetNets: Planning of

small cells was investigated in [135] assuming macrocell

locations are fixed. In [59], the BS placement opti-

mization was performed jointly for macrocell and small

cell BSs in a non uniform user density scenario. A

heuristic approach based on simulated annealing was

adopted, taking into account intercell interference, dy-

namic resource management, and joint uplink/downlink

performance. The authors demonstrate the efficiency of

HetNet planning in a hotspot scenario, shown in Fig. 7,

simulated using a Gaussian user distribution assuming

four macrocell BSs and 64 small cell BSs. In fact, the

simulated annealing approach move the small cells from

their rectangular grid positions to a Gaussian deployment,

following that of the user distribution. Such hotspot areas

are characterised with temporary traffic surges, such as

football stadiums, where the user density is very high

around a football match and very low otherwise. For this

reason, the HetNet deployment scenario is convenient,

since small cells can be switched on and off according

to the varying traffic.

2) Sensitivity to small cell deployment location in Het-

Nets: While planning, conventional cellular networks

consisting only the macro cells, even if the macro cells

are not deployed at the ideal location but somewhat

near the optimal location, the larger radius of the macro

cell, and the ability to tweak antenna tilts and azimuths

compensates the difference between optimal and the

actual location. This tolerance for difference between

actual and optimal location in case of small cells de-

creases due to their small coverage areas and relatively

inflexible antennas. As a result, contrary to popular belief,

physical location of the small cell requires more precise

engineering than macro cells. A slight difference between

the optimal and actual location of small cell due to the

physical limitations or real estate constraints can actually

degrade network performance as small cell location can

have large impact on interference pattern and mobility

related performance. Therefore, it becomes imperative to

make optimal decisions in HetNet planning for small cell

locations to achieve efficient performance of the network.

3) CP with RS Positioning Considerations in HetNets:

Most studies that investigate RS based deployments of

HetNets generally assume RS locations to be prefixed

by some arbitrary criterion. On the contrary to harness

the full advantage of RS its location is expected to

be more impromptu than BS and hence the impact of

location of RS on the performance of the system has to be

investigated. In [136], the authors address this challenge

by building on previous work in [137] and present an ana-

lytical study of RS positioning. The impact of RS location

selection and cell selection on the system performance

are evaluated in a single interferer scenario. Closed-form

expressions for the link SIR, link rate, and end-to-end

user rate distributions are obtained. Similarly, in [138]

authors have highlighted that existing theoretical analysis

on RS performance assessment has primarily focused on

Gaussian relay channels, and the analysis of interference-

limited relay deployment has been confined to simulation

based approaches. In their paper, they take the initiative to

provide analytical closed form expression to asses system

capacity as function of the optimal location and number

of relays, and resource sharing between relay and base-

stations. The paper shows that the optimal deployment

parameters are pre-dominantly a function of the saturation

capacity, path loss exponent and transmit powers.

E. CP with Off-loading Considerations in HetNets

In [135], the authors attempt to optimally plan small

cell locations for offloading traffic from macro to small

cells in a HetNet LTE cellular network. The challenge is

complicated further by interference coupling between cell

loads in a non- linear manner. A search algorithm leading

to near-optimal solutions is proposed. Its objective is
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to select, from a set of candidate locations, up to a

given number of small cell sites in a deployed macro

cell network. In addition, an approach for numerically

constructing a tight linear approximation is proposed, in

order to enable the use of mixed integer linear program-

ming to gauge optimality.

F. Planning with Multi-RAT

Beyond these early pioneering works on HetNets plan-

ning discussed in previous subsections, detailed network

planning in the presence of HetNets still needs a more

thorough and detailed investigation. Other more complex

scenarios, such as planning a network in the presence of

femtocells [139], that can be considered as small cells de-

ployed without operator control, make the problem more

challenging. Another relevant scenario is the planning

with multiple radio access technologies (RAT), where

other technologies, such as WiFi, can be used to offload

cellular traffic. This multi-RAT operation can be uncon-

trolled, similar to the case of femtocell deployments, or

operator-controlled, where the mobile operators deploy

WiFi access points to offload part of the cellular traffic.

VII. CHALLENGES AND OPPORTUNITIES IN

PLANNING FUTURE CELLULAR NETWORKS: WHAT IT

WILL TAKE TO PLAN 5G NETWORK?

In the wake of 5G, CP is faced with numerous challenges,

some evolving from 4G such as HetNets, carrier ag-

gregation, inter-cell interference coordination and CoMP,

others that are characteristic of 5G, such as the C-

RAN, D2D, M2M communication, mmWave and Mas-

sive MIMO based deployments. Fig. 6 shows a typical 5G

deployment consisting of a macro-cell, under-laid with a

heterogeneous mix of small cells including: micro-cells,

pico-cells, RS, remote radio heads (RRH), femtocells,

CDSA, D-MUD and D2D. In this section, we discuss

how the adaptation of these new technologies in 5G and

beyond may affect the CP paradigm

A. Planning with Cloud-RAN (C-RAN)

Dense deployment of small cells requires centralised

coordination to avoid inter-cell interference and provide

intelligent resource allocation in response to spatio tem-

porally varying traffic. The Cloud or Centralised RAN

architecture, is thus considered a prime enabler to ultra-

dense networks as it allows the required coordination.

Basically, the C-RAN consists of breaking of the tra-

ditional eNB functions and migrating them towards the

centralised processor. As shown in Fig. 6, the centralised

node holds the base band functions, and is called the base

band unit (BBU). The BBU is then connected to a many

low complexity access point, which often only consist of

radio and analog/digital functions, called the remote radio

head (RRH). Hence, from a radio point of view, the C-

RAN has solved the radio access bottleneck in a flexible,

scalable and adaptive manner due to the ease of resource

allocation among RRHs and addition or relocation of

RRHs. Moreover, owing to their low complexity, RRHs

are low cost, robust, and small in size, thus, result in the

reduction of the CAPEX of deployment and the OPEX

of maintenance and premises rent. Nonetheless, a new

bottleneck is born with the C-RAN; that is the link

connecting the RRH to the BBU, referred to as fronthaul.

The emerging C-RAN presents a categoric shift in both

coverage and capacity planning, while extending the CP

targets to the front haul. Coverage planning becomes cell-

less, since adaptive and variable sets of RRHs would now

form virtual cells, replacing the traditional base stations.

Capacity planning also evolves from being cell-centric

to BBU-centric or User centric, consequently, improving

resource usage efficiency. As for the front haul, it has

henceforth become an integral part of the virtual C-RAN

cell, hence, the corresponding CP approach.

1) CP with Radio Gain and Front-haul cost constraints in

C-RAN: Authors in [140] look at the trade-off between

the radio gains and front haul cost for different levels

of function migration, otherwise referred to as functional

split. Essentially, the C-RAN CP requires joint planning

of the radio sites and the front-haul, as in [141], which

looks at finding the RRH locations with a passive optical

fiber network (PON) for the fronthaul. The topic of

the paper is, thus, the infrastructure deployment and

layout planning problem under the C-RAN architecture.

It is formulated as a generic integer linear programming

(ILP) model which aims at minimising the deployment

cost, by identifying the locations of RRHs and optical

wavelength division multiplexers (WDM) and their cor-

responding association relations, with the constraint of

satisfying the coverage requirement. The optimisation

framework proves to be solvable and scalable as validated

through various case studies. Moreover, the results show

significant gains, when CoMP is used in the C-RAN

architecture, in terms of higher capacity and reliability

at lower cost.

2) CP with Joint Resource Management constraints in

C-RAN: Authors in [142] look a novel framework for

joint resource management in a HetNet with multi-RAT

and C-RAN. The framework consists of categorizing

various functionalities of the radio access and the fron-

thaul (PON-based) depending on the time requirement

to conduct the management actions. Self-organization

and cognitive capabilities are also incorporated in the

framework, which could be applied to various phases of

the network’s life such as planning, deployment, opti-

mization, etc

Authors in [143] also analyze the system capacity in

a C-RAN architecture, comparing two different CoMP

options with factional frequency reuse (FFR). A multiple

input single output (single user) scenario is generated

using joint transmission, and MIMO scenario (two users)

is created with beamforming, both assuming two RRHs.

The authors demonstrate an extra 6dB downlink capacity

gain with coordinated beamforming, however, at the ex-

pense of additional computational power for user pairing
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Fig. 6. 5G networks are envisioned to be multi-layered and multi-RAT consisting of macrocells, micro-cells, pico-cells, and relays, with device to device
communication, mmWave, massive MIMO and cloud-RAN

and selection.

3) CP with User-Centric Cells in C-RAN: Authors in

[144] revamp the common understanding of cellular

structure by proposing a user-centric virtual cell, formed

by the user at its center and a cluster of RRH around it.

Tight cooperation between these cells is possible, allow-

ing efficient power allocation. The system interference is

first modeled based on the mean and variance, then the

results are applied to find the optimum cell radius that

would maximize the downlink system capacity.

B. Planning in the Presence of M2M and IoT

The introduction of smart cities and the Internet of

Things (IoT) in which homes, smart vehicles, sensing

systems, and mundane objects are endowed with high-

speed machine-to-machine (M2M) communication capa-

bilities is seen as the major technological challenge for

the next decade [145]. While traditional M2M commu-

nications has relied on short-range technologies such as

Bluetooth or ZigBee, moving toward large-scale M2M

smart cities requires broader interconnection and com-

munications among machine type devices which is made

possible by enabling M2M communications over the

reliable cellular network infrastructure [146]. However,

realizing this vision is contingent upon transforming the

cellular infrastructure into a scalable and efficient system

capable of sustaining the diverse challenges of M2M

communications [145], [146], [147].

Consequently, novel cellular planning approaches are re-

quired for networks with M2M services. According to

the authors knowledge, the most of recent work on CP

does not account for M2M/IoT deployments. M2M/IoT

service service characteristics are typically different from

traditional human-to-human (H2H) services; M2M/IoT

services are distinguished in most applications by low

cost, low mobility, delay tolerance (except urgent security

and health cases), large number of devices (e.g., up

to 30,000 smart meters per cell), generally small and

infrequent data transmission, as defined in [148]. These

variations raise pertinent questions about cellular net-

work planning with M2M/IoT services, and pose diverse

challenges in accommodating both M2M/IoT and human

to human (H2H) traffic classes fairly and efficiently. A

recent study item by 3GPP [149] gives an insight on

M2M/IoT device characteristics that are relevant to net-

work planning, such as: single receive antenna, reduced

transmit power, reduced peak data rate of up to 1 Mbps,

device noise figure of 9 dB, etc. In addition to the device

characteristic constraints, M2M/IoT mobility behaviors

and quality of service requirements vary greatly per

M2M/IoT application. M2M/IoT over cellular networks

allows to cost effectively and efficiently connect heteroge-

neous M2M/IoT devices such as vehicles, smart meters,

sensors, and surveillance apparatus, among others. How-

ever, reaping the benefits of M2M/IoT deployment over

cellular requires overcoming major technical challenges
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Fig. 7. BS deployment (HetNet: 4 macro BSs and 64 small cell BSs) for a Gaussian user distribution over 25 km2 with a density of 40 users/km2. Upper left:
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in CP while taking into account architectural, operational,

and economic perspectives [145], [150], [151], [152].

1) Architecture level challenges: At the architectural

level, M2M communications over cellular systems will

significantly increase the heterogeneity of the wireless

landscape in terms of device types and traffic classes.

Modeling, analyzing, and managing such heterogeneous

M2M systems and incorporating those models in CP thus

becomes essential [153]. On the one hand, planning of

new nodes, such as M2M traffic aggregators or road side

units must be deployed and integrated into the CP which

traditionally has been focused on BS planning. On the

other hand, expanding the network via new base stations

or optimized frequency planning must now account for

scattered, large-scale, and diverse M2M traffic, that must

seamlessly co-exist with conventional cellular services.

2) Operational challenges: From an operational point of

view, the introduction of M2M will dramatically increase

the amount of data circulating in the cellular network.

This data explosion will naturally strain the already

resource-constrained infrastructure, thus introducing ma-

jor challenges for resource management and optimization

[145], [150], [151], [152], [148] that include: 1) manag-

ing constrained resources (power, time, frequency) for

large data volumes, 2) handling excessive M2M-service

dependent signaling that modern-day cellular systems are

not designed to sustain, 3) meeting heterogeneous QoS

constraints of diverse M2M services with little disrup-

tion to legacy H2H communications, 4) handling the

high-speed mobility and dynamics incurred by vehicular

M2M traffic, and 5) maintaining a self-organizing and

cost-effective operation in a dense and heterogeneous

network environment. In addition to these constraints,

planning of an M2M enabling cellular network will also

require consideration of features such as data aggregation

for sensor-based M2M traffic, direct vehicle-to-vehicle

communications, and coordinated communication for dis-

tributed M2M services.

3) Economics and business challenges: At the economic

level, CP for M2M services requires new business models

that allow to seize the various opportunities brought

forward by M2M communications [153], [154]. One key

issue is to develop market models for inclusion in CP to

analyze the interactions between several key players in

the M2M domain that include mobile operators, M2M

providers, and possibly governmental agencies [154]. In

addition, pricing will constitute an important factor in

CP for M2M. There is a need to develop and incorporate

models for pricing mechanisms for M2M services. The

key challenge here is that, pricing is largely intertwined

with both network planning and resource management,

as it is a key determinant of how and which cellular

resources are being used by the different M2M providers.
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C. CP in the Presence of D2D

Device-to-device (D2D) communications have been re-

ceiving significant research attention recently, due to their

planned incorporation in Release 12 of LTE-Advanced

(LTE-A). D2D communications in LTE-A would allow

a device to use the cellular spectrum in order to be

connected directly to another device. Consequently, a

transfer of large data amounts (e.g. multimedia) can occur

through a direct connection over short distances. This

short range (SR) D2D transfer permits to offload some

traffic from the cellular network, since it does not need

to use the network itself. D2D communications can take

place in one of three following modes:

1) D2D terminals can use dedicated resources assigned

to them by the cellular network.

2) They can reuse the same resources of the cellular

network.

3) They can form an underlay network [155], [156],

[157].

In the following we discuss the CP challenges, introduction of

D2D puts forth.

1) Fairness and Interference minimization: In an underlay

scenario the main challenge with D2D communication is to

keep the interference with the primary cellular network at tol-

erable levels. In [155], a one-to-one reuse problem is adopted,

where each D2D connection has to reuse a channel used by a

cellular connection. The solution minimizing the interference

is obtained using the Hungarian Algorithm. A joint scheduling

and resource allocation scheme is proposed in [156] for a

similar underlay scenario. The authors of [156] investigate a

tradeoff between system throughput and user fairness through

the definition of a fairness coefficient. In [157], the interfer-

ence between the D2D network and the cellular network is

controlled by keeping a minimum distance between a cellular

transmitter and D2D receiver. Round Robin scheduling is used

to ensure fairness. However, in the approach of [157], an extra

overhead is incurred since devices need to report their location

information to the BS.

2) Spatial Reuse: : Maximizing the spatial reuse while us-

ing D2D communications on dedicated or same channel is

something that has to be considered in CP. From network

perspective, small cells offer more aggressive spatial reuse.

But with D2D in picture problem becomes twisted by the

fact that small cells are more vulnerable to D2D interference

due to close proximity to device and low power, compared

to macro cells. Therefore, D2D considerate CP for HetNets

is challenging problem which remains to be investigated. For

pure macro cell based networks reuse maximization problem

is relatively more tractable. For example, a D2D resource

allocation scheme for maximizing spatial reuse is proposed

in [158], where the BS allocates D2D channels in a relatively

slow time scale whereas the mobile terminals (MTs) involved

in a direct D2D link can adjust the modulation and coding

scheme (MCS) level in a relatively fast time scale.

3) CP with D2D and M2M Interplay Considerations:

Network planning with D2D considerations alone is an open

problem. This problem is further aggravated by the fact that

M2M and D2D can have opposing effects on the network

operation: M2M adds additional traffic to be supported by the

cellular network, whereas D2D communications could offload

some traffic from the cellular BSs. Thus, the network planning

process needs also to take into account the interplay between

D2D and M2M when they coexist in future cellular networks.

D. CP with Control Data Separation Architecture (CDSA)

An undesired byproduct of inevitable densification of future

network is that there will be a huge signaling overload

specifically during scenarios such as mobility and handover,

if conventional signaling procedures are used. As investigated

recently [159], a better way to plan for next generation 5G

networks is to leverage CDSA. The main idea of the CDSA

originates from the fact that only a small amount of signaling

is required to enable ubiquitous coverage [160]. On the other

hand, data transmission and its related signaling are needed

on demand only when there are active user equipment (UE).

This calls for a two-layer RAN architecture with a logical

separation between:

• Network access and data transmission functionalities.

• Idle mode and active mode

• Cell-specific/broadcast-type and UE-specific/unicast-type

signaling.

In CDSA, a continuous and reliable coverage layer will be

provided by control base station (CBS) at low frequency

bands, where the large footprint ensures robust connectivity

and mobility. The data plane (DP) is supported by flexible,

adaptive, high capacity and energy efficient data base stations

(DBSs) that provide data transmission along with the nec-

essary signaling. As shown conceptually in Fig. 6, all UEs

are anchored to the CBS, while active UEs are associated

with both the CBS and the DBS in a dual connection mode

[161]. CDSA offers a range of benefits such as better energy

efficiency and system capacity and resource efficient support

for mobility as well as M2M/IoT. However, the concept of

CDSA is still in early stages and specifying functionalities

of each plane is not trivial and is an open research problem.

Examples of recent work that investigate this problem include

[162][159].

Expectedly, CDSA will have a major impact on the way

cellular systems are planned. Specifically, it will expand the

dimensions of the solution space of the CP by requiring

planning of two different nodes DBS and CBS. Additionally,

the distinct requirements of coverage and capacity of both

DBS and CBS, delay between DBS and CBS, proximity

between DBS and CBS, will impose new constraints on DBS

and CBS location, power, coverage and capacity planning.

E. CP with mmWave based cells

Promise of mmWave stems from two factors: 1) abundance

of spectrum, 2) noise limited operation regime thanks to high

propagation loss and thus short range which opens the doors

for even denser deployment. However, the very same blessing

associated with mmWave, i.e., a short range, is also a curse.

Unlike sub 5GHz deployments where densification is a choice,
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and level of densification can be tailored to meet capacity

demands as coverage is not a major constraint due to low

propagation losses, mmWave based deployments have to be

extremely dense to provide a barely acceptable level of contin-

uous coverage. Several recent studies show [43] a maximum

range of 100-200m, in line of sight (LoS) conditions. This

means if mmWaves based small cells are adapted in future

networks they will have to be adapted as complimentary source

of capacity, while primary source of coverage has to be a

high frequency (HF) based deployment of macro and small

cells. One possibility to do so, as recently proposed in [159]

is to exploit CDSA such that mmWave is used for DBS and

HF spectrum is used for CBS. This immediately makes the

pandora of CP challenges discussed in context of HetNets

as well as CDSA relevant to mmWave based CP. Additional

new challenge will be incorporation of the fact that mmWave

requires LoS, and mmWave based cells might offer highly

directive antennas. This may require planning of DBS with

the consideration of cell less deployment where coverage will

follow users in the form of narrowly focused beams, as such

no fixed cell foot prints will exist. This will require a major

shift from traditional CP, where cell foot print and their ability

to cover the whole area of interest plays the pivotal role in CP

problem formulations and solution search.

F. CP with Massive MIMO based cells

The major challenge in planning massive MIMO enabled

base stations stems from the fact that the large antenna array

gain complicates the max-RSS based cell association problem

further in HetNets. As per [35], even when macro BS reduces

its power to same level as that of small cell, the user has a

higher probability to still get connected to the macro due to

a large gain of massive MIMO macrocell. As a result, this

gain can force the massive MIMO macrocell to carry most

of the data traffic in HetNets, resulting in a significant load

imbalance between the macrocells and small cell. The second

main challenge in CP with massive MIMO is accommodation

of two conflicting objectives:

Two Conflicting Objective in CP with Massive MIMO:

There are two opposing forces at work, while deploying

massive MIMO in HetNets. Massive MIMO lends its gain

from channel diversity. However, in ultra-dense small cell

deployment, small cells owing to their small coverage area

may result in large spatial correlation of the channels limiting

degrees of freedom available to Massive MIMO thereby un-

dermining their gain. As networks becomes denser the number

of active users per cell will decrease and the need for massive

MIMO may decrease. Other factors such as cost, energy

and backhaul need to be taken into account for association/

offloading decisions.

Therefore, planning of future networks have to strike a

balance that might exist in the two extremes of all macro

cells with massive MIMO, and HetNets with massive MIMO

only on cells with size above a certain threshold. Investigation

of this optimal cell size while taking into account the user

density, number of antennas per site, channel types and TCO

is a research problem that demands extensive study.

VIII. CONCLUSIONS

A plethora of new technologies need to be incorporated in

future cellular networks to meet unprecedented traffic demands

and to provide newly conceived services such as IoT/M2M.

These technologies include HetNets, CoMP, D2D, CDSA,

mmWave and massive MIMO. The adaptation of these tech-

nologies means that one of the oldest but still not fully matured

research area in cellular networks, i.e. cell planning needs a

major paradigm shift. This article serves as comprehensive

reference to kick start the research in CP for 5G networks for

both academic and industry based researchers.

To this end, in this article we provided timely analysis of

this paradigm shift needed in CP. We start with a tutorial of

CP to identify the input and outputs of typical CP problem and

to characterize its computational complexity. We then provide

concise recap of past attempts on different variants of classic

CP problem. This is followed by a analysis of recent devel-

opments in CP to incorporate e.g., EE, traffic uncertainties and

CoMP. We then provide an overview of recent advancements

made in modelling tools to make CP problem more tractable

and/or realistic. We then provide a comprehensive analysis of

challenges that cellular industry still faces in planning HetNets,

along with promising approaches to address these challenges.

We conclude this article with a detailed discussion challenges

and research opportunities in CP for 5G and beyond that stem

from introduction of IoT/M2M, D2D, CDSA, mmWave and

massive MIMO.
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