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An InGaAs/InP DHBT with Simultaneous fτ / fmax

404 / 901 GHz and 4.3 V Breakdown Voltage
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and Amy W.K. Liu

Abstract—We report an InP/InGaAs/InP double heterojunction
bipolar transistor (DHBT) fabricated in a triple-mesa structure,
exhibiting simultaneous 404 GHz fτ and 901 GHz fmax. The
emitter and base contacts were defined by electron beam litho-
graphy with better than 10 nm resolution and smaller than 20 nm
alignment error. The base-collector junction has been passivated
by depositing a SiNx layer prior to benzocyclobutene (BCB) pla-
narization, improving the open-base breakdown voltage BVCEO
from 3.7 V to 4.3 V.

Index Terms—InGaAs/InP DHBT, HBT, THz device

I. INTRODUCTION

T
HE demand for submm-wave radio systems [1], high

data rate communication systems [2] and high perfor-

mance signal processing systems [3], [4] drives the devel-

opment of high bandwidth transistors. Key to increasing RF

performance is scaling [5]: transit delays are reduced by

thinning epitaxial base and collector layers. Concurrently, RC
charging delays are lowered by lithographically narrowing

emitter and base/collector widths while maintaining constant

parasitic resistances Rex, Rbb, device current Ie and transcon-

ductance gm. Scaling challenges involve achieving low ohmic

contact resistitivies to emitter and base, fabricating narrow and

well aligned emitter and base/collector junctions as well as

sustaining high device current densities.

We report a self-aligned triple-mesa InP/InGaAs/InP DHBT

with fτ = 404GHz and simultaneous fmax = 901GHz at

180 nm x 2.7 µm emitter area, operating without failure at

current and power densities in excess of 23mA/µm2 and

42mW/µm2, respectively. Under different biasing conditions,

fτ = 424GHz and simultaneous fmax = 831GHz have been

exhibited. Although the fmax obtained here is ≈10 % below

previous results [6] due to process variations (emitter end

undercut, contact resistivity) and lower than [7], it exceeds
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TABLE I
EPITAXIAL STRUCTURE DESIGN

T (nm) Material Doping (cm−3) Description

10 In0.53Ga0.47As 8× 10
19 : Si Emitter Cap

20 InP 5× 10
19 : Si Emitter

15 InP 2× 10
18 : Si Emitter

30 In≈0.5Ga≈0.5As 9–5× 10
19 : C Base

13.5 In0.53Ga0.47As 5× 10
16 : Si Setback

16.5 InGaAs/InAlAs 5× 10
16 : Si B-C Grade

3 InP 3.6× 10
18 : Si Pulse Doping

67 InP 5× 10
16 : Si Drift Collector

7.5 InP 2× 10
19 : Si Sub-Collector

5 In0.53Ga0.47As 4× 10
19 : Si Sub-Collector

300 InP 1× 10
19 : Si Sub-Collector

5 In0.53Ga0.47As NID Etch Stop

≈ 625k SI InP Substrate

that of other reported HBTs, including those of recent publi-

cations [8], [9]. The usable range of transistor operation [10] is

extended by increasing the breakdown voltage BVCEO = 4.3V

by means of passivating the base/collector semiconductor with

conformal PECVD SiNx prior to BCB planarization. A device

identical in epitaxial structure and similar in fabrication except

with BCB junction passivation exhibited BVCEO = 3.7V [6].

II. DESIGN AND FABRICATION

The DHBT wafer has been grown by solid source mo-

lecular beam epitaxy on a 4” InP substrate by IQE. The n-

In0.53Ga0.47As emitter cap is highly doped for low emitter

resistance Rex. The 30 nm thick base is doping-graded from

9–5× 1019 cm−3, resulting in 55meV conduction band slope.

The 100 nm thick collector is comprised of a 13.5 nm setback,

a 16.5 nm chirped superlattice InGaAs/InAlAs grade and a

67 nm drift collector region (Table I).

The 500 nm tall composite Mo/W/TiW emitter metal stack

is fabricated in a dry etch process [11]. After forming dielectric

SiNx sidewalls on the emitter metal, the emitter semiconduc-

tor is removed in a selective wet etch. Self-aligned base

metal contacts Pt/Ti/Pd/Au 3.5/12/17/70 nm are then lifted-off.

The distance between the edges of emitter and base contact

≈12 nm is determined by the thickness of the emitter sidewalls

and the emitter undercut. This contributes to low base access

resistance. The base/collector mesa is formed through selective

wet etches. After post lift-off and device isolation, surface

oxides are removed in 1:10 HCl:H2O and a 30 nm thick
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Fig. 1. Transmission electron micrograph of a fabricated device. Emitter
junction width we = 240 nm, single-sided base metal width wbm = 220 nm,
single-sided base mesa undercut wbmu = 125 nm, emitter-base contact
spacing wGap ≈ 12 nm.
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Fig. 2. Common emitter characteristics for an HBT with 180 nm x 2.7 µm
emitter junction area.
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Fig. 3. Collector-emitter breakdown measurement with floating base BVCEO

for an HBT with 180 nm x 2.7 µm emitter junction area.

SiNx layer is deposited by PECVD. The transistors are then

planarized with BCB.

Sub-20 nm alignment tolerance between emitter and base

has been attained in electron beam lithography. Such alignment

tolerance is necessary given that the base metal-semiconductor

contacts are only 105 nm wide (Fig. 1).

III. RESULTS

Electrical yield throughout the sample is approximately

80 %, exceeding previous experiments by 30 %. Extrac-

tions from transmission line model measurements show

base and collector contact resistivity ρbase ≈ 9Ω µm2 and

ρcoll ≈ 55Ω µm2. The sheet resistance of unpinched and

pinched base TLM structures is estimated at 1200 and

810 Ω/� [12], indicating process damage to the extrinsic base

regions. FIB/TEM analysis reveals that the base metallization
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Fig. 4. Gummel characteristics for an HBT with 180 nm x 2.7 µm emitter
junction area.
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Fig. 5. Measured RF gains for an HBT with 180 nm x 2.7 µm emitter junction
area and 310 nm base-collector mesa width using off-wafer LRRM structures
and on-wafer pad open/short de-embedding. Single-pole fit to the measured
data yields fτ 404GHz, fmax 901GHz.
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Fig. 6. Variation of fτ , fmax and Ccb with Je at Vce = 1.8V for an HBT
with 180 nm x 2.7 µm emitter junction area and 310 nm base-collector mesa
width.

interdiffuses with ≈ 6 nm of InGaAs (Fig. 1). A total emitter

access resistivity ρem ≈ 3.3Ω µm2 was extracted from RF

data. A peak DC current gain β = 25 was observed on

HBTs with emitter area Ae = 3.7 · 0.24 µm2, i.e. on

the largest emitter width devices on the sample that have

the smallest perimeter-to-area ratio. Figures 2 and 4 show

common-emitter and Gummel characteristics for a transistor

with Ae = 2.7 · 0.18 µm2. The common-emitter breakdown

voltage BVCEO = 4.3V for Jc = 10 kA/cm2 is observed for

the same transistor (Fig. 3). We suspect that the conformal

SiNx layer improves surface passivation of the base-collector

junction, thereby reducing the surface trap density [13], [14]

and enhancing the surface electric field distribution.

RF measurements from 1-67 GHz were carried out using an

Agilent E8361A PNA. The reference plane was brought to the

probe tips using LRRM calibration on an impedance standard.
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Fig. 7. A hybrid-π equivalent circuit for the HBT at peak fmax performance.

Fig. 8. Comparison of (solid line) measured S-parameters of Fig. 5 and (x)
simulated S-parameters from the model of Fig. 7 from 1–67 GHz.

The device parameters have been de-embedded from measure-

ments of on-wafer open and short pad structures [15]. Figure 5

shows peak fmax performance at Ic = 11.3mA, Vce = 1.8V,

Vcb = 0.89V, and Je = 23.7mA/µm2. The Kirk effect is

observed at Je = 25mA/µm2 when fτ falls to 95 % of

its peak value (Fig. 6). A small signal equivalent hybrid-π

circuit has been developed from RF measurements (Fig. 7)

exhibiting good agreement between measured and simulated

S parameters (Fig. 8).

IV. CONCLUSIONS

InP/InGaAs DHBTs with simultaneous fτ = 404GHz and

fmax = 901GHz at we = 180 nm, 310 nm base-collector

mesa width and emitter current density Je > 23mA/µm2 have

been demonstrated. Sub-20 nm alignment between emitter and

base has been achieved using electron beam lithography. The

breakdown voltage BVCEO = 4.3V has been increased by

passivating the base/collector mesa with PECVD SiNx.

High base and collector contact resistivities limit fmax

performance. TEM analysis revealed interdiffusion of Pt base

metal with InGaAs. Moreover, the extrinsic base semiconduc-

tor has been damaged during processing. Future work will

pursue reduction in access resistivities while narrowing base

contact widths to improve device performance.
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