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Abstract—Power-law noise in clocks and oscillators can be
simulated by Fourier transforming a modified spectrum of white
phase noise. This approach has been applied successfully to
simulation of the Allan variance and the modified Allan variance
in both overlapping and non-overlapping forms [1][2]. When
significant frequency drift is present in an oscillator, at large
sampling times the Allan variance overestimates the intrinsic
noise, while the Hadamard variance is insensitive to frequency
drift. The simulation method is extended in this paper to
predicting the Hadamard variance for the common types of
power-law noise. Symmetric real matrices are introduced whose
traces–the sums of their eigenvalues–are equal to the Hadamard
variances, in overlapping or non-overlapping forms, as well as for
the corresponding forms of the modified Hadamard variance. We
show that the standard relations between spectral densities and
Hadamard variance are obtained with this method. The matrix
eigenvalues determine probability distributions for observing a
variance at an arbitrary value of the sampling interval τ , and
hence for estimating confidence in the measurements. 1

I. INTRODUCTION

When an oscillator’s frequency drifts, usually the long-term
behavior of the Allan variance is dominated by the drift, and
the oscillator stability is not well characterized by the Allan
variance [3]. We could approach this problem by estimating
and removing the drift from the measured time series, but
the estimation process may itself introduce uncertainties. If
the time series is only of the order of a day or so in length,
drift removal may not introduce intolerable uncertainties[4].
However, removing the drift from longer time series may
also remove very long term random components that might
result in severe underestimation of the variance for large
sampling times. The Hadamard variance, which is defined
(see below) in terms of a third difference of values of the
time measurements, is naturally insensitive to drift and is
commonly applied to clocks such as those based on rubidium
atomic frequency standards (RAFS), which are known to suffer
from unpredictable frequency drift following launch but which
have better stability than cesium clocks[24][6]. In this paper
we build on our previous work that delineates the simulation
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of power-law noises for the Allan variance and the Modified
Allan variance[1][2].

Imperfections in performance of the clock under test are
studied by analyzing noise in the time deviation sequence
xk = tk − kτ0, or the fractional frequency difference during
the sampling interval τ = sτ0:

∆
(1)
k,s = (xk+s − xk)/(sτ0). (1)

The frequency spectrum of fractional frequency differences
can usually be adequately characterized by linear superposition
of a small set of types of power-law noise. The frequency
spectrum of the fractional frequency differences of a particular
noise type is given by a one-sided spectral density [5]

Sy(f) = hαf
α, f > 0, (2)

where the units of Sy(f) are Hz−1. For the common power-
law noise types, α varies in integral steps from +2 down
to -2 corresponding, respectively, to white phase modulation,
flicker phase modulation, white frequency modulation, flicker
frequency modulation, and random walk of frequency.

This paper is organized as follows. Sect. II summarizes the
basic simulation method, and Sect. III applies the method to
the overlapping Hadamard variance. Analytic expressions for
limiting values of overlapping Hadamard variances at large
sampling times are given in Sect. IV. The non-overlapping
Hadamard variance is described in Sect. V, and the mod-
ified overlapping case is presented in Sect. VI. Sect. VII
shows how diagonalization of the averaged squared second-
difference operator, applied to the simulated time series, leads
to expressions for the probability of observing a value of the
variance for some chosen value of the sampling or averaging
time. The approach is extended to discuss the modified non-
overlapping Hadamard variance in Sect. VIII. Application
to radar variance, as an example, is discussed in Sect. IX,
followed by summary and conclusion in Sect. X.

II. DISCRETE TIME SERIES

The noise amplitudes at Fourier frequencies fm may be rep-
resented by a set of N normally distributed random complex
numbers wn having mean zero and variance < w∗mwm >=
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2σ2, that would by themselves generate a simulated spectrum
for white phase noise[1]:

Xk =
τ2
0σ√
N

N/2∑
m=−N/2+1

|f0|λ

|fm|λ
e−

2πimk
N

(wm
σ

)
. (3)

The factor τ2
0 is introduced in Eq. (3) so that when the random

numbers wm are interpreted as frequencies, Xk has physical
dimensions of time. The negative sign for the exponent in (3)
was chosen to simplify later equations. In (3), the discrete
frequencies are

fm =
m

Nτ0
, −N

2
+ 1 ≤ m ≤ N

2
, (4)

with N being an even number. The frequency parameter f0

was also introduced to make the physical dimensions of (3)
consistent. It is a constant unrelated to (4). The product τ2

0 f
λ
0

determines the level hα of the noise. An alternative expression
involving a sum over positive frequencies only is:

Xk =
2τ2

0√
N

N/2−1∑
m=1

|f0|λ

|fm|λ

(
cos

2πmk

N
um + sin

2πmj

N
vm

)
+

τ2
0√
N

|f0|λ

|fN/2|λ
(−1)kuN/2. (5)

We shall assume the variance of the noise amplitudes is such
that〈

(wm)∗wn
〉

=
〈
u2+v2

〉
δmn = 2σ2δmn; m 6= 0, N/2. (6)

wm = um + ivm where um and vm are independent uncorre-
lated random numbers. Also, < w2

m >=< u2−v2 +2iuv >=
0 for m 6= N/2. In order to avoid division by zero, we shall
always assume that the Fourier amplitude corresponding to
zero frequency vanishes. This only means that the average of
the time residuals in the time series will be zero, and has no
effect on any variance that involves time differences.

To obtain the correct spectral density, we shall assume that
the constants introduced in (5) are related to the strength of
the power-law noise by

τ2
0 |f0|λ√
N

=

(
hα

16π2σ2Nτ0

)1/2

. (7)

It has been shown[1] that if 2λ = 2 − α, the correct average
spectral density is obtained. (For example, white phase noise
is generated when λ = 0.) The simulated time series is

Xk =

(
hα

16π2Nτ0

)1/2∑
m

e−
2πimk
N

|fm|1−α/2
(wm
σ

)
. (8)

III. OVERLAPPING HADAMARD VARIANCE

Consider the third-difference operator defined by

∆
(3)
j,s =

1√
6τ2

(
Xj+3s − 3Xj+2s + 3Xj+s −Xj

)
. (9)

The completely overlapping Hadamard variance is formed by
averaging the square of this third difference over all possible
values of j from 1 to N − 3s: Thus,

σ2
Ho(τ) =

1

N − 3s

〈N−3s∑
j=1

(
∆

(3)
j,s

)2〉
. (10)

In terms of the time series, (8), the third difference can be
reduced using elementary trigonometric identities:

∆
(3)
j,s =

(
hα

96τ2π2σ2Nτ0

)1/2∑
m

wm
|fm|λ

e−
πim(2j+3s)

N

×
(
e−

3πims
N − 3e

−πims
N + 3e

πims
N − e 3πims

N

)
= i

(
2hα

3τ2π2σ2Nτ0

)1/2∑
m

wme
−πim(2j+3s)

N

|fm|λ

×
(

sin
(πms
N

))3

. (11)

We form the averaged square of ∆
(3)
j,s by multiplying the

expression (11) by its complex conjugate, then summing over
all possible values of j and averaging. After averaging, only
terms corresponding to the same frequencies in the two factors
contribute. the overlapping Hadamard variance is

σ2
Ho(τ) =

4hα
3Nτ0π2τ2

∑
m

(
sin
(πms
N

))6
1

|fm|2λ
. (12)

The spacing between frequencies is 1/(Nτ0) = df ; in the limit
of large N , the sum over frequencies passes to an integral:

σ2
Ho(τ) =

4hα
3π2τ2

∫ fh

−fh

df

|f |2λ

(
sin(πfτ)

)6

. (13)

Writing this as a single-sided integral in terms of the spectral
density,

σ2
Ho(τ) =

8

3π2τ2

∫ fh

0

Sy(f)df

f2

(
sin(πfτ)

)6

. (14)

Returning to the discussion of (12), for convenience we
introduce the abbreviation

K =
8hα

3π2τ2Nτ0
. (15)

If we write the sum in terms of positive frequencies only, a
factor of 2 comes in except for the most positive frequency
and so

σ2
Ho(τ) = K

(N/2−1∑
m>0

(
sin
(
πms
N

))6

f2λ
m

+

(
sin πs

2

)6

2(fN/2)2λ

)
. (16)

The influence of the second term in (16) is very small except
when s << N ; we shall therefore neglect it in the remainder
of this paper.

Similar arguments lead to known expressions for the non-
overlapping version of the Hadamard variance and the mod-
ified Hadamard variance. Proofs of these statements can be
given provided no windowing or undersampling is applied to
the time series. These forms of the variance will be discussed
in later sections.
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Figure 1. Overlapping Hadamard variance for N = 1024, for flicker PM.
h1 has been set equal to unity and τ0 = 1. Several actual simulation runs
are plotted; the theoretical average is shown as a dashed line.

IV. LIMIT OF LARGE SAMPLING TIMES

We evaluate the integral in (14) for each of the common
power-law noises in the limit of large sampling times τ .
The spectral density is Sy(f) = hαf

α. Contributions to the
integrals typically have oscillating terms that become small in
this limit. Table I lists the limiting values of the overlapping
Hadamard variance with such oscillating terms omitted. γ is
the Euler’s constant in σ2

Ho(τ) for α = 1.

Sy(f) σ2
Ho(τ) Mod σ2

Ho(τ) λ

h2f2
5h2fh
6π2τ2

5h2
12π2τ3

0

h1f
h1

6π2τ2

(
5γ

3h1 ln
(

4
3

)
π2τ2

1
2

+5 ln(fhπτ) +
ln(48)

2

)
h0

h0
2τ

2h0
9τ

1

h−1

f
1
2
h−1 ln

(
256
27

)
8
3
h−1 ln

(
27×33/8

32

)
3
2

h−2

f2
1
3
h−2π2τ 2π2

9
h−2τ 2

Table I
ASYMPTOTIC EXPRESSIONS FOR THE HADAMARD AND MODIFIED

HADAMARD VARIANCES, IN THE LIMIT OF LARGE SAMPLING TIMES
τ = sτ0 .

As is the case for the overlapping Allan variance, the
difference between White PM and Flicker PM cannot be
distinguished by the dependence on τ . Figure 1 plots the
overlapping Hadamard variance for flicker PM, N = 1024.
Several simulation runs are shown as well as the average
variance for Sy(f) = h1f .

V. NON-OVERLAPPING HADAMARD VARIANCE

In the completely overlapping form, the sum in (10) runs
from 1 to N − 3s, thus some values of the time series would
be used more than once. In order to avoid this problem, a

non-overlapping form is defined as in (10) but with the sum
over j skipping repeated data items. Consider the sum

1

s

j+s−1∑
l=j

(
∆

(3)
l,s

)2
. (17)

The sum has s terms and uses each data item from j to j+4s−
1 exactly once. This block of data is of length 4s. In general
4s is incommensurable with N so there will exist some data
items that will not be included in such blocks. Let Mmax be
the maximum integer such that

(4Mmax + 1)s ≤ N. (18)

Then if we define the non-overlapping form of the Hadamard
variance as

σHno(τ)2 =
1

(Mmax + 1)s2

〈Mmax∑
M=0

(4M+1)s∑
l=1+4Ms

(
∆

(3)
l,s

)2〉
,

(19)
we will have left out part of one block of data, but each item
of data in the sum will appear with equal weight in (19).
Although an estimate of the variance could be improved by
incorporating the partial block of data and appropriately mod-
ifying the normalization constant, we shall develop the theory
ignoring such contributions because the ensemble average of
each term in (19) is independent of l.

Squaring the third difference in (11), we write one of the
factors as a complex conjugate and average over the random
numbers. Then the only terms that contribute to the double
sum are those for equal frequencies, and

〈(
∆

(3)
k,s

)2〉
=

8

6

hα
π2τ2Nτ0

∑
m>0

(
sin πms

N

)6

|fm|2λ
. (20)

Thus, the average of both overlapping and non-overlapping
forms of the Hadamard variance are the same, but as will be
shown the probability distributions and confidence intervals
are different.

VI. MODIFIED OVERLAPPING HADAMARD VARIANCE

The Hadamard variance suffers from the same difficulty as
does the Allan Variance–the variances for both white phase
noise and flicker PM are proportional to τ−2 for large τ ;
thus, the Hadamard variance cannot distinguish between white
PM and flicker PM. David Allan solved this problem by
inventing the modified variance, which involves averaging s
differences before squaring, then averaging the result. The
Modified Hadamard variance is defined as[23]:

Mod σ2
H(τ) =

〈(
1

s

j+s−1∑
l=j

∆
(3)
j,s

)2〉
, (21)

where the average is taken over the ensemble of values of the
random number distributions and over all possible values of
j. For the overlapping form, using elementary trigonometric
identities the expression reduces to

Mod σ2
H =

64τ4
0σ

2

3τ2Ns2

∑
m

|f0|2λ

|fm|2λ
(

sin
πms

N

)6( sin πms
N

sin πm
N

)2

.

(22)
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In the limit of sufficiently densely-spaced frequencies, the sum
passes to a single-sided integal:

Mod σ2
H(τ) =

8

3

∫ fh

0

Sy(f)df

(πsτf)2

(sinπτf)8

(sinπτ0f)2
. (23)

In general this integral is difficult to evaluate. In Table I we
give the results in the limit

τ/τ0 →∞. (24)

As is the case for the modified Allan variance, the modi-
fied Hadamard variance distinguishes between white PM and
flicker PM.

In the non-overlapping case, the desire is to use each data
item only once, but to average over s values of the third
difference before squaring. The average over s values of the
third difference, from (11) is

1

s

j+s−1∑
l=j

∆
(3)
l,s = i

√
K

12s2

j+s−1∑
l=j

∑
m

wm
|fm|λ

(25)

×
(

sin
(πms
N

))3

e−
πim
N (2l+3s) .

In this sum each item in the time series occurs exactly once.
Therefore as in the case of the non-overlapping variance, the
modified Hadamard variance can be constructed in terms of
blocks of non-overlapping data. Here the sum over l is a
geometric series giving:

1

s

j+s−1∑
l=j

∆
(3)
k,s = i

√
K

12s2

∑
m

wm
|fm|λ

(26)

×

(
sin
(
πms
N

))4

sin(πmN )
e−

πim
N (2l+4s−1) .

Squaring and averaging, again writing one factor in terms of a
complex conjugate, as in the above cases only terms of equal
frequencies contribute and then summing only over positive
frequencies, the modified Hadamard variance is the same as
that given in (22), which can also be written

Mod σ2
H(τ) =

8K

3s2

∑
m>0

(
sin πms

N

)8
|fm|2λ

(
sin πm

N

)2 . (27)

In the next section we discuss the different probability func-
tions that arise.

VII. EIGENVALUES AND PROBABILITIES

In the present section we shall develop expressions for
the probability of observing a particular value Ao for the
overlapping Hadamard variance in a single measurement, or in
a single simulation run. Ao is a random variable representing a
possible value of the overlapping variance. We use a subscript
“o” to denote the completely overlapping case. To save writing,

we introduce the following abbreviations:

F jm =

(
sin

(
πms
N

))3

|fm|λ
sin

(
πm(2j + 3s)

N

)
;

Gjm = −

(
sin

(
πms
N

))3

|fm|λ
cos

(
πm(2j + 3s)

N

)
. (28)

The dependence on s is suppressed, but is to be understood.
We write the third difference in terms of a sum over positive
frequencies only, keeping in mind that the most positive and
the most negative frequencies only contribute a single term
since sin(π(j + s)) = 0. The imaginary contributions cancel,
and from (11) we obtain

∆
(3)
j,s =

√
K
∑
m>0

(
F jm

um
σ

+Gjm
vm
σ

)
. (29)

There is no term in vN/2. Then from (10) the overlapping
Hadamard variance is given by

σ2
y(τ) =

K

N − 3s

N−3s∑
j=1

∑
m>0

(
(F jm)2 + (Gjm)2

)
. (30)

To compute the probability that a particular value Ao is
observed for the Hadamard variance, given all the possible
values that the random variables u1, v1, ...uN/2 can have, we
form the integral

P (Ao) =

∫
δ

(
Ao −

1

N − 3s

∑
j

(
∆

(3)
j,s

)2)
×
∏
m>0

(
e−

u2m+v2m
2σ2

dumdvm
2πσ2

)
. (31)

The Dirac delta function constrains the averaged third dif-
ference to the specific value Ao while the normally dis-
tributed random variables u1, v1, ...um, vm, ...uN/2 range over
their values. There is no integral for vN/2. Inspecting this
probability and (29) for the third difference indicates that
we could dispense with the factors of σ−1 and work with
normally distributed random variables having variance unity.
Henceforth, we set σ = 1.

The exponent involving the random variables is a quadratic
form that can be written in matrix form by introducing the N−
1 dimension column vector U (the zero frequency component
is excluded)

UT = [u1, v1, ...um, vm, ...vN/2−1, uN/2] . (32)

Then
1

2

∑
m>0

(u2
m + v2

m) =
1

2
UTU =

1

2
UT1U, (33)

where 1 represents the unit matrix. The delta-function in (31)
can be written in exponential form by introducing one of
its well-known representations, an integral over all angular
frequencies ω [14]:

P (Ao) =

∫ ∞
−∞

dω

2π
eiω
(
Ao− 1

N−3s

∑
j

(
∆

(3)
j,s

)2)
×
∏
m>0

(
e−

u2m+v2m
2σ2

dumdvm
2πσ2

)
. (34)
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The contour of integration goes along the real axis in the
complex ω plane.

The squared third difference is a complicated quadratic
form in the random variables u1, v1, ...um, vm, ...uN/2. If
this quadratic form could be diagonalized without materially
changing the other quadratic terms in the exponent, then the
integrals could be performed in spite of the imaginary factor
i in the exponent. To accomplish this we introduce a column
vector Cj that depends on j,m, s,N and whose transpose is

(Cj)T = [F j1 , G
j
1, ...F

j
m, G

j
m, ...G

j
N/2−1, F

j
N/2] . (35)

The column vector has N − 1 real components. It contains
all the dependence of the third difference on frequency,
averaging time τ , and on the particular power-law noise. We
use indices {m,n} as matrix (frequency) indices. The (scalar)
third difference operator in (29) can be written very compactly
as a matrix product

∆
(3)
j,s =

√
K(Cj)TU =

√
KUTCj . (36)

Then the quantity to be averaged is

1

N − 3s

∑
j

(
∆

(3)
j,s

)2

= UT
(

K

N − 3s

∑
j

Cj(Cj)T
)
U.

(37)
The matrix

Ho =
K

N − 3s

∑
j

Cj(Cj)T (38)

is real and symmetric. Ho is also Hermitian and therefore has
real eigenvalues. A real symmetric matrix can be diagonalized
by an orthogonal transformation [15][16], which we denote by
O. Although we shall not need to determine this orthogonal
transformation explicitly, it could be found by first finding
the eigenvalues ε and eigenvectors ψε of Ho, by solving the
equation

Hoψε = εψε . (39)

The transformation O is a matrix of dimension (N − 1) ×
(N − 1) consisting of the components of the normalized
eigenvectors placed in columns. Then

HoO = OE , (40)

where E is a diagonal matrix with entries equal to the
eigenvalues of the matrix Ho. Then, since the transpose of
an orthogonal matrix is the inverse of the matrix,

OTHoO = E . (41)

The matrix Ho is thus diagonalized, at the cost of introducing
a linear transformation of the random variables:

1

N − 3s

∑
j

(
∆

(3)
j,s

)2
= UTHoU = UTOOTHoOO

TU

= (UTO)E(OTU) . (42)

We introduce N − 1 new random variables by means of the
transformation:

V = OTU . (43)

Then the term in the exponent representing the Gaussian
distributions is

−1

2
UT1U = −1

2
UTO1OTU

= −1

2
V T1V = −1

2

N−1∑
n=1

V 2
n . (44)

The Gaussian distributions remain basically unchanged.
Further, the determinant of an orthogonal matrix is ±1,

because the transpose of the matrix is also the inverse, and
the total volume element for the space of random numbers is
unchanged:

dV1dV2...dVN−1 = dU1dU2...dUN−1. (45)

After completing the diagonalization,

1

N − 3s

∑
j

(
∆

(3)
j,s

)2
=
∑
i

εiV
2
i . (46)

The probability is therefore

P (Ao) =

∫
dω

2π
eiω
(
Ao−

∑
k εkV

2
k

)∏
i

(
e−

V 2
i
2
dVi√

2π

)
. (47)

An eigenvalue of zero will not contribute to this probability
since the random variable corresponding to a zero eigenvalue
just integrates out.

Let the eigenvalue εi have multiplicity µi, which means that
the eigenvalue εi is repeated µi times. Integration over the
random variables then gives a useful form for the probability:

P (Ao) =

∫ +∞

−∞

dω

2π

eiωAo∏
k(1 + 2iεkω)µi/2

. (48)

Finally the contour integral may be deformed and closed in
the upper half complex plane where it encloses the singulari-
ties of the integrand. This is discussed in detail in [1] and will
not be repeated here. If Ao < 0 the contour may be closed
in the lower half plane where there are no singularities, so in
this case P (Ao < 0) = 0.

Properties of the eigenvalues. First, it is easily checked that
the probability is correctly normalized by using properties of
the delta-function,∫

P (Ao)dAo =

∫ +∞

−∞

dω

2π

∫
eiωAodAo∏

i(1 + 2iεiω)µi/2

=

∫ +∞

−∞

δ(ω)dω∏
i(1 + 2iεiω)µi/2

=

∫ +∞

−∞
dωδ(ω) = 1 . (49)

Next let us calculate the trace of Ho. Since the trace is not
changed by an orthogonal transformation,

Trace(OTHoO) = Trace(HoOO
T ) = Trace(HoOO

−1)

= Trace(Ho) =
∑
i

εi . (50)

The sum of the diagonal elements of Ho equals the sum of
the eigenvalues of Ho. If we then explicitly evaluate the sum
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of the diagonal elements of Ho we find from (50) and (28)∑
i

εi =
K

N − 3s

∑
j

Trace
(
Cj(Cj)T )

=
K

N − 3s

∑
j

∑
m>0

(
(F jm

)2
+
(
Gjm)2)

)

= K
∑
m>0

(
sin πms

N

)6

|fm|2−α
= σ2

Ho(τ) . (51)

Every term labeled by j contributes the same amount. We
obtain the useful result that the overlapping Hadamard vari-
ance is equal to the sum of the eigenvalues of the matrix Ho.
Similar results have been established for the various types of
the Allan variance. [1]

Distribution of eigenvalues. The equation for eigenvalues
Hoψµ = εψµ produces many zero eigenvalues, especially
when τ is large. The dimension of the matrix Ho is therefore
much larger than necessary. We have performed extensive nu-
merical calculations for many different values of N , which in-
dicate that for the completely overlapping Hadamard variance,
the eigenvalue equation has a total of N − 1 eigenvalues, but
only N − 3s non-zero eigenvalues; the number of significant
eigenvalues is in fact equal to the number of terms N − 3s in
the sum over j in the equations:

K

N − 3s

∑
n

N−3s∑
j

(Cm)j(Cn)jψn = εψm . (52)

The factorized form of Ho, that arises on squaring the differ-
ence operator in (38), permits the reduction of the size of the
matrix that is to be diagonalized. We introduce the quantities

φjµ =
∑
n

(Cn)jψnµ . (53)

We use the Greek index µ to label a non-zero eigenvalue and
the index ν to label a zero eigenvalue. The eigenvalue equation
becomes

K

N − 3s

∑
j

(Cm)jφjµ = εψmµ . (54)

Multiply by (Cm)l and sum over the frequency index m. Then

K

N − 3s

∑
m,j

(Cm)l(Cm)jφjµ = εφlµ . (55)

This is an eigenvalue equation with reduced dimension N−3s
rather than N − 1, since the number of possible values of j
is N − 3s. The eigenvalue equation can therefore be written
in terms of a reduced matrix Hred, given by

(Hred)
lj =

K

N − 3s

∑
m

(Cm)l(Cm)j . (56)

The indices l, j run from 1 to N − 3s. Eigenvalues generated
by (55) are all non-zero. To prove this, multiply (55) by φlµ
and sum over l. We obtain

K

N − 3s

∑
m

(∑
l

(Cm)lφlµ

)2

= ε
∑
l

(
φlµ
)2
. (57)

The eigenvalue cannot be zero unless∑
l

(Cm)lφlµ = 0 (58)

for every m. The number of such conditions however is larger
than the number N − 3s of variables, so the only way this
can be satisfied is if φlµ = 0, a trivial solution. Therefore to
obtain normalizable eigenvectors from (55), the corresponding
eigenvalues must all be positive. This is true even though
some of these conditions may be trivially satisfied if the factor
sin(πms/N) vanishes, which happens sometimes when

ms = MN , (59)

where M is an integer. Every time a solution of (59) occurs,
two of (58) relating components of φlµ are lost. Suppose there
were n solutions to (59); then the number of conditions lost
would be 2n. The number of variables is N − 3s and the
number of conditions left in (58) would be N − 1− 2n. The
excess of conditions over variables is thus

N − 1− 2n− (N − 3s) = 3s− 2n− 1 . (60)

It can be shown that under all circumstances 3s−2n−1 > 0,
thus the eigenvalues obtained by solving (54) are all non-zero.

We temporarily drop the subscript o since the remainder of
the results in this section are valid for any of the variances.
If the eigenvalues are found and the appropriate matrix is
diagonalized, we may compute the probability for observing
a value of the variance, denoted by the random variable A, by

P (A) =

∫ ∞
−∞

dω

2π
eiω
(
A−V TEV

)∏
i

(
e−V

2
i /2dVi√
2π

)
=

∫
dω

2π

eiωA∏
(1 + 2iεiω)µi/2

. (61)

Case of a single eigenvalue. If a single eigenvalue occurs once
only, the general probability expression, (61), has a single
factor in the denominator, and evaluation of the integral gives:

P (A) =
1√

2πσ2
Ho(τ)

e−A/(2σ
2
Ho(τ))

√
A

. (62)

This is a chi-squared distribution with exactly one degree of
freedom.

Case of two distinct non-zero eigenvalues. For the overlap-
ping variance, when s has its maximum value N/3− 1 there
are two unequal eigenvalues. The probability integral can be
performed by closing the contour in the upper half plane and
gives the expression

P (A) =
1

2
√
ε1ε2

e−
A
4

(
1
ε1

+ 1
ε2

)
I0

(
A

4

( 1

ε2
− 1

ε1

))
, (63)

where I0 is the modified Bessel function of order zero.
[17][18] The probability is correctly normalized. It differs
from a chi-squared distribution in that the density does not
have a singularity at A = 0.

Case of a single root ε repeated three times. The probability
integral can be evaluated by integrating by parts, with the result

P (A) =
1√

2πε3
Ae−A/2ε . (64)
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Figure 2. Probability Density for N = 1024, τ = 340τ0, for flicker PM.
h1 has been set equal to unity and τ0 = 1, normalized to correspond to
5000 simulation runs. A histogram of the values obtained in the independent
simulation runs is shown with 80 bins in the range from 0 to 0.00004

Evaluation of the contour integral when there are more than
two distinct eigenvalues is discussed in [1]. If an eigenvalue
occurs an even number 2n times, the corresponding singularity
becomes a pole of order n and a chi-squared probability
distribution may result; this has only been observed to occur
for white PM.

Case of four distinct eigenvalues. For flicker PM with
N = 1024, when τ has its maximum value 341τ0, there is
only one eigenvalue. For τ = 340τ0 there are four distinct
eigenvalues, {3.906492× 10−6, 5.941771× 10−7, 3.344254×
10−7, 2.290869 × 10−7}. In figure 2 we plot a histogram of
the values of the Hadamard variance for flicker PM for the
case N = 1024, τ0 = 1 s, τ = 340 s for the overlapping
case. A histogram of the results of 5000 independent runs of
the noise simulation process is also shown. Evaluation of the
contour integral was discussed in detail in [1]. The probability
density is given by

P (A) =
1

π

∫ r2

r1

√
r1r2r3r4e

−yAdy√
(y − r1)(r2 − y)(r3 − y)(r4 − y)

− 1

π

∫ r4

r3

√
r1r2r3r4e

−yAdy√
(y − r1)(y − r2)(y − r3)(r4 − y)

, (65)

where ri = 1/(2εi).
For this simulation, the average variance is τ = 5.046 ×

10−6 while the sum of eigenvalues is 5.064 × 10−6; the
confidence limits within which there is a 50% probability of
finding the variance are 1.484× 10−6 and 6.461× 10−6 and
the median is 3.111 × 10−6. For comparison, a chi-squared
probability distribution with three degrees of freedom with the
same average has a 50% probability of finding the variance
between 2.05× 10−6 and 6.93× 10−6.

For values of s that are small compared to N , matrices such
as Hred are large and the computation of eigenvalues is very
time-consuming. Alternatively, noisy time series generated
using Eq. (3) will yield noisy values of variance from Eqs.
(8) and (9); a sufficient number of repetitions will then yield
a distribution of values of the variance that will approach the
desired probability distribution. For example with N = 1024,
s = 128 the matrix Ho is of order 640 × 640, which takes a
very long time to diagonalize. On the other hand (for hα = 1)

after 5000 runs the 25%, 50% 75% levels of the cumulative
ditribution are 0.00002711, 0.00003119, 0.00003616 respec-
tively and the average variance is 0.00003237. The value of
the integral (13) obtained is 0.00003230. This method was
used to obtain the histogram in Fig. 2.

VIII. MODIFIED NON-OVERLAPPING HADAMARD
VARIANCE

The usual form of the Hadamard variance does not distin-
guish between white PM and flicker PM. These noise types
are distinguished by the Modified variance defined by first
averaging third differences over s consecutive values and
then performing the remaining averages over the ensemble of
random numbers. The modified Hadamard variance is defined
as

Mod σ2
H(τ) =

〈(
1

s

j+s−1∑
l=j

∆
(3)
l,s

)2〉
. (66)

The sum over l in (66) utilizes a block of data corresponding
to indices from l = j to l = j + 4s− 1, with each data item
included exactly once. The next block of data to be averaged
would include data labeled from j + 4s to j + 8s− 1, and in
general from j + 4Ms to j + (4M + 1)s − 1, where M is
an integer. Starting from j = 1, there will be some maximum
value of M such that

s(4Mmax + 1) ≤ N. (67)

If the equality is satisfied, the data stream consists of complete
blocks; if not, there will be a partial block for which the sum
over s cannot be completed; we then discard the data from
such an incomplete block and work only with complete blocks,
for which each data item is included exactly once.

Consider a single block, starting from j as in (66) above.
Then it is straightforward to show that

1

s

l+s−1∑
l=j

∆
(3)
j,s =

i

s

√
K1

∑
m

wm
|fm|λ

(
sin πms

N )

)4

sin πm
N

×e
−iπm(2j+4s−1)

N , (68)

where

K1 =
2hα

3π2τ2Nτ0
. (69)

and we have set σ = 1. Averaging the square of this quantity
over the random variables, using (6), then writing the sum over
positive frequencies, we obtain

〈(
1

s

j+s−1∑
l=j

∆
(3)
j,s

)2〉
=

4K

3s2

∑
m>0

1

|fm|2λ

(
sin πms

N

)8

(
sin πm

N

)2 ,

(70)
which is the same as for the overlapping case. If there are M
blocks of non-overlapping data in the average, then the result
will still be given by (70) since the average entails division
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by M . If the spacing of frequencies is dense enough to pass
to an integral, we obtain

Mod σ2
H(τ) =

8

3π2τ2

∫ fh

0

Sy(f)

f2

(
sin(πfτ)

)8

(s sin(πfτ0))2
. (71)

To derive expressions for the probability of observing a
particular value of the Hadamard variance, we replace j by
1 + 4Ms and write the sum in (66) over positive frequencies
before averaging:

1

s

4Ms+s∑
l=1+4Ms

∆
(3)
l,s =

√
4K1

s

∑
m>0

(Fmum +Gmvm) . (72)

where

FMm =

(
sin πms

N

)4

|fm|λ sin πm
N

sin q; (73)

GMm = −

(
sin πms

N

)4

|fm|λ sin πm
N

cos q, (74)

and where q = πm(1 + 8Ms+ 4s)/N .
With these new definitions for FMm and GMm , we define a

new vector CM such that

(CM )T = {FM1 , GM1 , FM2 , GM2 , ..., FN/2} . (75)

Using (32) for the random numbers leads to

1

s

4Ms+s∑
l=1+4Ms

∆
(3)
l,s =

√
4K1

s2
CTU =

√
4K1

s2
UCT . (76)

Then the quantity to be averaged is

1

Mmax + 1

∑
M

(
1

s

4Ms+s∑
l=1+4Ms

∆
(3)
j,s

)2

=

4K1

s2(Mmax + 1)

∑
M

UTCM (CM )TU. (77)

Defining the matrix

(HH)mn =
( 4K1

s2(Mmax + 1)

∑
M

CM (CM )T
)
mn
, (78)

the probability of observing a value A of the variance will be

P (A) =

∫
dω

2π
eiω(A−UTHHU/s2)

×
∏
m>0

(
e−

u2m+v2m
2σ2

dumdvm
2πσ2

)
. (79)

Diagonalization of the matrix HH leads in the usual way to
the expression for the probability in terms of the eigenvalues
εi:

P (A) =

∫ fh

0

dω

2π

eiωA∏
i

√
1 + 2iωεi

. (80)

The eigenvalue equation will be

HHψ
(ε) = εψ(ε) , (81)

or
4K1

s2(Mmax + 1)

∑
j,M

CMi (CMj )Tψ
(ε)
j = εψ

(ε)
i . (82)

The number of eigenvalues can be investigated by reducing
the order of the matrix. Let

φM(ε) =
∑
n

CMj ψ
(ε)
j . (83)

Then (81) becomes
4K1

s2(Mmax + 1)

∑
M

CMi φM(ε) = εψ
(ε)
i . (84)

Multiply by CLi and sum over the frequency index. This gives∑
M

(Hred)
LMφM(ε) = εφL(ε) , (85)

where the reduced matrix has dimension Mmax + 1 and is
given by

(Hred)
LM =

4K1

s2(Mmax + 1)

∑
i

CLi C
M
i . (86)

Multiply (85) by φLε and sum over L. The result is
4K1

s2(Mmax + 1)
= ε

∑
L

(φLε)2 . (87)

IX. A RADAR VARIANCE

The analysis methods developed in this paper can be ex-
tended to other variances. For example, these methods can
be applied to cases in which there is dead time between
measurements of average frequency during the sampling in-
tervals. Suppose for example that the measurements consist
of intervals of length τ = sτ0 during which an average
frequency is measured, separated by dead time intervals of
length D−τ during which no measurements are available, with
the possibility of significant drift during the dead times. Let
the index j label the measurement intervals with j = 1, 2, ...N ,
and let D = dτ0 with d an integer. A variance can be defined
in terms of the difference between the average frequency in
the jth interval and that in the interval labeled by j + r:

∆
(2)
j,r,s =

1√
2

(
yj+r,s − yj,s

)
, (88)

where yj,s is the average frequency in the interval j of length
sτ0. The average fractional frequency during the measurement
interval τ is

yr,d,s =
1

τ
(Xrd+s −Xrd) . (89)

To eliminate drift during the dead time, a second difference
of frequencies can be used:

∆
(3)
j,r,d,s =

1√
6

(yj+2r,d,s − 2yj+r,d,s + yj,d,s) . (90)

This is a third difference in the times. Using trigonometric
identities it can be reduced to

∆
(3)
j,r,d,s = 8i

√
K1

∑
m

wm
|fm|λ

sin
πms

N

×
(

sin
πmrd

N

)2

e−πim(s+2jd+2rd)/N . (91)
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Then an appropriate variance can be defined as

Ψ(τ,D)2 =

〈(
∆

(2)
j,r,d,s

)2〉
. (92)

Performing the average and writing the result in terms of a
sum over positive frequencies,

Ψ(τ,D)2 =
4hα

3π2τ2(Nτ0)

×
∑
m>0

1

|fm|2λ
(

sin
πms

N

)2(
sin

πmrd

N

)4
. (93)

If the measurements are sufficiently densely spaced that it is
possible to pass to an integral, this can be shown to reduce to

Ψ(τ,D)2 =
8

3

∫ fh

0

df
Sy(f)

(πfτ)2

(
sin(πfrD)

)4(
sin(πfτ)

)2
.

(94)
When D = τ and r = 1 there is no real dead time and this
variance reduces to the ordinary Hadamard variance.

X. SUMMARY AND CONCLUSION

This paper extends the formalism, developed in [1] for
simulating time series, to time series having frequency drifts
such as are common, for example, in rubidium standards.
The methods are applied to computing Hadamard variances
that are used to characterize stability of clocks with drifts.
These include overlapping and non-overlapping forms of the
Hadamard variance, and the Modified Hadamard variance. Just
as in the case of Allan variance discussed in [1], diagonal-
ization of quadratic forms for the average variances leads to
expressions for the probabilities of observing particular values
of the variance for a given sampling time τ = sτ0. The
probabilities are expressed in terms of integrals depending on
the eigenvalues of matrices formed from squares of the third
differences that are used to define the Hadamard variances.
The eigenvalues are usually distinct; only for white PM have
eigenvalues been observed to occur (after much calculation)
with multiplicities other than unity, based on our simulations.
Generally speaking, the number of eigenvalues is equal to the
number of terms occurring in the sum used to define averages
of the third-difference operator.

It is well-known that a chi-squared distribution with n
degrees of freedom occurs for a variable that is the sum of
squares of n normally distributed random variables. It has been
shown that, with this method, probabilities for the Hadamard
variance, using the present simulation method, are not always–
in fact are rarely–chi-squared distributions. This is because
the frequency dependence, inserted to make the time series
obey the chosen noise power law, disrupts the distribution of
eigenvalues in most cases.

The present approach respects all the standard expressions
for spectral density and the relationships between Hadamard
variance and spectral density for the common power-law
noises. It also yields reasonable simulation results for power-
law noises that diverge more rapidly than flicker noise at low
frequencies.
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