Improved Hysteresis and Reliability of MoS₂ FETs with High-Quality CVD Growth and Al₂O₃ Encapsulation

Yury Yu. Illarionov, Kirby K.H. Smithe, Michael Waltl, Theresia Knobloch, Eric Pop, Senior Member, IEEE, and Tibor Grasser, Fellow, IEEE

Abstract—We report considerable improvement in the hysteresis and reliability of MoS_2 field-effect transistors (FETs) introduced by chemical vapour deposition (CVD) of MoS_2 and dielectric encapsulation. Our results show that a high-quality 15 nm thick Al_2O_3 layer allows for an efficient protection of the devices from adsorbent-type trapping sites. Combined use of the CVD-grown MoS_2 as a channel and encapsulation simultaneously leads to at least an order of magnitude smaller hysteresis and up to two orders of magnitude lower long-term drifts of the transistor characteristics. Together with high on/off current ratios (~10⁹) achieved in our devices, this presents a considerable advance in the technology of MoS_2 FETs. As such, we conclude that both CVD growth of MoS_2 and encapsulation present important technological steps toward reaching commercial quality standards of next-generation two-dimensional (2D) technologies.

Index Terms – single-layer MoS₂, encapsulation, reliability, charged traps, hysteresis, bias-temperature instabilities

I. INTRODUCTION

Molybdenum disulfide (MoS₂) is now considered a promising "beyond-graphene" material for applications in nextgeneration two-dimensional (2D) electronics. In contrast to graphene, MoS₂ has a sizable direct electronic bandgap of up to $\sim 2.6 \,\mathrm{eV}$ in the single-layer limit [1–3], which makes this material attractive for digital device applications. Owing to this, considerable progress in fabrication of single-layer (1L) MoS₂ field-effect transistors (FETs) has been demonstrated recently. In particular, numerous single-layer devices with SiO_2 [4,5], Al_2O_3 [6], HfO_2 [4] and hexagonal boron nitride (hBN) [7,8] gate insulators have been reported. The typical on/off current ratios of these devices are within $10^5 - 10^7$, while the subthreshold swing (SS) can reach nearly ideal values down to 74 mV/dec, as already reported for high-k/MoS₂/SiO₂ devices [4]. In addition, a number of successful attempts at fabricating multi-layer MoS₂ FETs have been undertaken [9-17], with the best subthreshold swing of 69 mV/dec achieved

Yu.Yu. Illarionov, M. Waltl, T. Knobloch, T. Grasser are with the Institute for Microelectronics (TU Wien), Gusshausstrasse 27-29, 1040 Vienna, Austria.

for MoS_2 /high-k devices [17]. However, independently of the number of channel layers, available MoS_2 device prototypes still suffer from a sizable hysteresis [5, 8, 10, 14, 15] and longterm drifts of the gate transfer characteristics [8, 11, 13], which are known from Si technologies as bias-temperature instabilities (BTI) [18–20]. These issues are typically attributed to charge trapping by both oxide traps [8, 13, 15] and adsorbenttype trapping sites (e.g. water molecules) on the MoS₂ channel [5, 8, 10, 11]. While the hysteresis and BTI impede stable device operation at a defined operating point, the reliability of MoS_2 prototypes with respect to these issues is still far below the standards of modern commercial FETs [8, 11, 13]. As such, BTI and hysteresis in MoS_2 FETs must be addressed prior to commercialization of these next-generation technologies.

Here we report on the improvement of both the reliability and the performance of 1L MoS₂ FETs with SiO₂ insulator by optimized device processing and encapsulation with a highquality 15 nm thick Al₂O₃ layer. Our results show that our devices not only exhibit high on/off current ratio (\sim 10⁹), but also that both the hysteresis and the threshold voltage shifts due to positive and negative BTI (PBTI and NBTI, respectively) become 1–2 orders of magnitude smaller. This presents a considerable breakthrough in the technology of MoS₂ FETs.

II. DEVICES

Our devices are single-layer back-gated MoS₂ FETs with a 25 nm thick SiO₂ insulator, 50 nm thick gold source/drain contacts and a 15 nm thick high-quality Al₂O₃ encapsulation (Fig. 1a,b). Single-layer MoS₂ was grown at $T = 850^{\circ}$ C in Ar atmosphere (760 torr) by chemical vapor deposition (CVD) directly on SiO₂/p⁺⁺-Si substrates [21], growth time was 15 minutes. Then, after verification of the superior quality of our CVD-grown MoS₂ film [22], the MoS₂ FETs were fabricated via a three-step optical lithography process to simultaneously create hundreds of devices with channel dimensions ranging from 2 to $20\,\mu\text{m}$ [22]. First, probe pad areas were defined with photoresist, etched out with O₂ plasma and filled with 2/40 nm Ti/Au. Following liftoff, contact extension regions were defined and filled with 50 nm of pure Au, in order to minimize contact resistance [23]. After a second liftoff, the channel widths were defined and the exposed MoS₂ was etched away with O₂ plasma, followed by a solvent clean to remove the photoresist. Finally, a high-quality Al₂O₃ encapsulation layer was deposited using a modified method of [24]. Namely, 120 cycles of atomic layer deposition (ALD) of Al₂O₃ were

Yu.Yu. Illarionov is also with Ioffe Physical-Technical Institute, Polytechnicheskaya 26, 194021 St-Petersburg, Russia (e-mail: illarionov@iue.tuwien.ac.at).

K.K.H. Smith and E. Pop are with the Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA.

The authors thank for the financial support through the FWF grant n° 12606-N30. Yu.Yu.I. is a member of the Mediterranean Institute of Fundamental Physics (MIFP).

performed at 300°C after deposition of a 1.5 nm thick Al nucleation layer. Note that a relatively high ALD growth temperature allows to remove impurities that might be present on the surface of the MoS₂ channel before deposition of the encapsulation layer. This Stanford-built ALD setup allows to deposit a high-quality Al_2O_3 layer with few inherent charge traps.

III. EXPERIMENTAL DETAILS

Electrical measurements were performed in a vacuum $(\sim 5 \times 10^{-6} \text{ torr})$ in complete darkness. This was necessary to obtain consistent results for comparison with bare devices which are known to be sensitive to the detrimental impact of environment [5, 10]. First, we measured the drain current vs. gate voltage $(I_{\rm D}-V_{\rm G})$ characteristics using the autorange mode, which was necessary to evaluate the best case on/off current ratio in our devices. Then we analyzed the hysteresis dynamics by measuring the $I_{\rm D}$ - $V_{\rm G}$ characteristics using forward (V⁺) and reversed (V^-) sweep directions and different measurement frequencies $f = 1/(Nt_{step})$, with N being the number of V_G steps and t_{step} the sampling time [8]. Finally, we examined the BTI degradation and recovery dynamics using our experimental technique by applying subsequent stress/recovery cycles with logarithmically increased stress times t_s [8,25]. A considerable difference compared to our previous work for MoS_2 FETs [8] is that, similarly to the technique used for Si devices [26], here a constant gate voltage is applied not only during stress (V_{GS}), but also during recovery (V_{GR}). This leads to more reproducible results, as otherwise the potential at the back gate, which is formed by Si substrate, shows large uncontrollable drifts.

IV. RESULTS AND DISCUSSION

In Fig. 1c we show the $I_{\rm D}$ - $V_{\rm G}$ characteristics measured for our encapsulated CVD-grown MoS₂ device at $T = 27^{\circ}$ C. The on/off current ratio is at least 10⁹, which is larger than previously reported for CVD-grown MoS₂. Also, similarly to our previous work on bare exfoliated MoS₂ FETs [8], at $T = 165^{\circ}$ C (Fig. 1d) the threshold voltage $V_{\rm th}$ of the same device becomes more negative. However, here this issue is less pronounced and thus the measured on/off current ratio remains as high as 10⁷, which further underlines the high stability of these encapsulated CVD-grown devices.

In Fig. 2a,b we compare the $I_{\rm D}$ - $V_{\rm G}$ characteristics measured for our encapsulated CVD-grown MoS₂/SiO₂(25 nm) devices, bare devices fabricated using the same method, and bare exfoliated single-layer MoS₂/SiO₂(90 nm) FETs which are similar to those studied in our previous work [8]. Owing to improved processing technology, CVD-grown devices exhibit considerably steeper subthreshold slopes and larger on current values. Furthermore, the hysteresis, which is sizable for bare exfoliated devices, becomes considerably smaller for bare CVD-grown devices and can be almost completely suppressed for their encapsulated counterparts. In Fig. 2c we compare the hysteresis widths $\Delta V_{\rm H}$ normalized by the oxide field factor ($V_{\rm Gmax}$ - $V_{\rm Gmin}$)/ $d_{\rm ox}$, with $d_{\rm ox}$ being the oxide thickness, versus the measurement frequency f for three devices. Clearly, the

Fig. 1. (a) Schematic layout of our CVD-grown 1L MoS₂ FETs encapsulated by a 15 nm thick Al₂O₃ layer. (b) Optical microscope image of the investigated devices (the contact pads are $100 \times 100 \ \mu m^2$). The I_D - V_G characteristics of our device ($L = 8 \ \mu m$, $W = 20 \ \mu m$) measured at $T = 27^{\circ}$ C (c) and $T = 165^{\circ}$ C (d).

Fig. 2. (a) The $I_{\rm D}$ - $V_{\rm G}$ characteristics of exfoliated MoS₂/SiO₂(90 nm) FET ($L = 1.5 \,\mu$ m, $W = 7 \,\mu$ m) and CVD-grown MoS₂/SiO₂(25 nm) devices ($L = 6 \,\mu$ m, $W = 10 \,\mu$ m for bare and $L = 8 \,\mu$ m, $W = 20 \,\mu$ m for encapsulated device) measured using the autorange mode. The current is normalized by W. (b) The $I_{\rm D}$ - $V_{\rm G}$ characteristics of the same devices measured using both sweep directions and a constant sweep rate $S = 0.02 \,$ V/s. (c) The normalized hysteresis widths versus the measurement frequency f.

encapsulated CVD-grown device exhibits nearly one order of magnitude improvement compared to a bare device of the same technology and two orders of magnitude compared to the exfoliated bare device. As such, we can conclude that our high-quality Al_2O_3 encapsulation layer efficiently protects the devices from fast adsorbent-type trapping sites which are in part responsible for the hysteresis in MoS_2 FETs.

In Fig. 3a,b we show evolution of the $I_{\rm D}$ - $V_{\rm G}$ characteristics and corresponding $V_{\rm th}$ recovery traces measured at the recovery gate voltage $V_{\rm GR} = -0.5$ V after subsequent NBTI and PBTI stresses. Remarkably, the degradation is considerably smaller than has been ever reported for MoS₂ FETs. In particular, in Fig. 3c we compare the NBTI and PBTI recovery traces measured after stresses with $t_{\rm s} = 10$ ks for our

Fig. 3. Evolution of the $I_{\rm D}$ - $V_{\rm G}$ characteristics of our encapsulated CVDgrown MoS₂ FET with $L = 8 \,\mu$ m, $W = 20 \,\mu$ m (top) and the corresponding $V_{\rm th}$ recovery traces (bottom) after subsequent NBTI (a) and PBTI (b) stresses. (c) Normalized NBTI and PBTI recovery measured after $t_{\rm s} = 10 \,\rm ks$ stresses.

Fig. 4. Comparison of the PBTI (top) and NBTI (bottom) shifts normalized by the oxide field (0.4 - 4.8 MV/cm) for different 2D technologies. Encapsulated CVD-grown MoS₂/SiO₂ FETs exhibit the best NBTI and PBTI reliability.

encapsulated CVD-grown MoS₂ FETs and their bare exfoliated counterparts from our previous work [8]. Since the oxide thicknesses and stress voltages are different, we normalize the threshold voltage shifts by the oxide field $F_{ox} = V_{GS}/d_{ox}$, which is 2.2 MV/cm for exfoliated device and either 4 MV/cm (NBTI) or 4.8 MV/cm (PBTI) for CVD-grown MoS₂ FET. While for encapsulated CVD-grown devices both NBTI and PBTI shifts are more than an order of magnitude smaller, they tend to completely recover after several hours. In contrast, the degree of recovery of considerable BTI shifts in bare exfoliated MoS₂ FETs for the same time interval does not exceed 40%. Therefore, we conclude that Al_2O_3 encapsulation, together with our optimized device processing, allows to minimize the amount of slower process-induced defects and adsorbents, which may contribute to charge trapping leading to BTI. As such, we suggest that the observed BTI degradation in our encapsulated devices is dominated by oxide traps in SiO₂, which are situated within several nanometers from the MoS₂/SiO₂ interface and thus can exchange charges with the channel by means of tunneling. As known from Si technologies [27] and our previous works on black phosphorus (BP) [28] and MoS₂ FETs [29], these defects are energetically aligned within certain defect bands, with the one contributing to charge trapping in MoS_2 FETs located $\sim 2.7 \text{ eV}$ below the SiO₂ conduction band edge [27, 28]. This position of the defect band relative to the MoS₂ conduction band, together with the Fermi level pinning in accumulation [30, 31], makes NBTI more favorable than PBTI. That is why PBTI degradation in our devices is weaker than NBTI, which is important for MoS₂ n-FETs working at positive $V_{\rm G}$.

Finally, in Fig. 4 we compare initially measured normalized PBTI and NBTI shifts versus t_s for our encapsulated CVDgrown MoS₂/SiO₂ FETs with those obtained for bare exfoliated MoS₂/SiO₂ [8], stacked MoS₂/hBN [8] and BP/SiO₂ [28] devices. Remarkably, the PBTI shifts for our encapsulated MoS₂ FETs are around an order of magnitude smaller than in previously studied 2D devices. As for NBTI, encapsulated MoS₂ devices studied here can slightly outperform Al₂O₃ encapsulated BP/SiO₂ FETs, which have been previously considered the most stable with respect to room temperature BTI among other 2D devices. Although commercial standards require further improvement of the reliability for at least one order of magnitude, our encapsulated MoS₂ FETs present a considerable step forward in this direction.

V. CONCLUSIONS

In summary, we have suggested a versatile way to improve both the reliability and performance of MoS_2 FETs by optimization of the device processing conditions and the use of a high-quality Al_2O_3 encapsulation to protect the device from adsorbent-type trapping sites. While already having an extremely high on/off current ratio of $\sim 10^9$, our devices also exhibit a considerable improvement in terms of hysteresis and BTI stability. As such, we conclude that high-quality encapsulation of MoS_2 FETs, together with CVD growth of MoS_2 film, present an important technological step toward reaching commercial quality standards of these new technologies.

REFERENCES

- [1] A.R. Klots, A.K.M. Newaz, B. Wang, D. Prasai, H. Krzyzanowska, J. Lin, D. Caudel, N.J. Ghimire, J. Yan, B.L. Ivanov, K.A. Velizhanin, A. Burger, D.G. Mandrus, N.H. Tolk, S.T. Pantelides, and K.I. Bolotin, "Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy," *Sci. Rep.*, vol. 4, pp. 6608, Oct. 2014, DOI: 10.1038/srep06608.
- [2] Y.L. Huang, Y. Chen, W. Zhang, S.Y. Quek, C.-H. Chen, L.-J. Li, W.-T. Hsu, W.-H. Chang, Y.J. Zheng, W. Chen, and A.T.S. Wee, "Bandgap tunability at single-layer molybdenum disulphide grain boundaries," *Nature Commun.*, vol. 6, pp. 6298, Aug. 2015, DOI: 10.1038/ncomms7298.
- [3] F.A. Rasmussen and K.S. Thygesen, "Computational 2D materials database: electronic structure of transition-metal dichalcogenides and oxides," J. Phys. Chem. C, vol. 119, no. 23, pp. 13169–13183, Apr. 2015, DOI: 10.1021/acs.jpcc.5b02950.
- [4] B. Radisavljevic, A. Radenovic, J. Berivio, V. Giacometti, and A. Kis, "Single-layer MoS₂ transistors," *Nat. Nanotechnol.*, vol. 6, no. 3, pp. 147–150, Jan. 2011, DOI: 10.1038/nnano.2010.279.
- [5] D.J. Late, B. Liu, H.S.S.R. Matte, V.P. Dravid, and C.N.R. Rao, "Hysteresis in single-layer MoS₂ field effect transistors," ACS Nano, vol. 6, no. 6, pp. 5635–5641, May 2012, DOI: 10.1021/nn301572c.
- [6] J. Kang, W. Liu, and K. Banerjee, "High-performance MoS₂ transistors with low resistance molybdenum contacts," *Appl. Phys. Lett.*, vol. 104, no. 9, pp. 093106, Mar. 2014, DOI: 10.1063/1.4866340.
- [7] G.-H. Lee, Y.-J. Yu, X. Cui, N. Petrone, C.-H. Lee, M.S. Choi, D.-Y. Lee, C. Lee, W.J. Yoo, K. Watanabe, T. Taniguchi, C. Nockolls, P. Kim, and J. Hone, "Flexible and transparent MoS₂ field-effect transistors on hexagonal boron nitride-graphene heterostructures," *ACS Nano*, vol. 7, no. 9, pp. 7931–7936, Aug. 2013, DOI: 10.1021/nn402954e.
- [8] Yu.Yu. Illarionov, G. Rzepa, M. Waltl, T. Knobloch, A. Grill, M.M. Furchi, T. Mueller, and T. Grasser, "The role of charge trapping in MoS₂/SiO₂ and MoS₂/hBN field-effect transistors," *2D Mater.*, vol. 3, no. 3, pp. 035004, Jul. 2016, DOI: 10.1088/2053-1583/3/3/035004.
- [9] S. Das, H.Y. Chen, A.V. Penumatcha, and J. Appenzeller, "High performance multilayer MoS₂ transistors with scandium contacts," *Nano Lett.*, vol. 13, no. 1, pp. 100–105, Dec. 2012, DOI: 10.1021/nl303583v.
- [10] H. Qiu, L. Pan, Z. Yao, J. Li, Y. Shi, and X. Wang, "Electrical characterization of back-gated bi-layer MoS₂ field-effect transistors and the effect of ambient on their performances," *Appl. Phys. Lett.*, vol. 100, no. 12, pp. 123104, Mar. 2012, DOI: 10.1063/1.3696045.
- [11] K. Cho, W. Park, J. Park, H. Jeong, J. Jang, T.-Y. Kim, W.-K. Hong, S. Hong, and T. Lee, "Electric stress-induced threshold voltage instability of multilayer MoS₂ field effect transistors," *ACS Nano*, vol. 7, no. 9, pp. 7751–7758, Aug. 2013, DOI: 10.1021/nn402348r.
- [12] T. Li, G. Du, B. Zhang, and Z. Zeng, "Scaling behavior of hysteresis in multilayer MoS₂ field effect transistors," *Appl. Phys. Lett.*, vol. 105, no. 9, pp. 093107, Sep. 2014, DOI: 10.1063/1.4894865.
- [13] S. Yang, S. Park, S. Jang, H. Kim, and J.-Y. Kwon, "Electrical stability of multilayer MoS₂ field-effect transistor under negative bias stress at various temperatures," *Phys. Status Solidi RRL*, vol. 8, no. 8, pp. 714– 718, Jun. 2014, DOI: 10.1002/pssr.201409146.
- [14] A.-J. Cho, S. Yang, K. Park, S.D. Namgung, H. Kim, and J.-Y. Kwon, "Multi-layer MoS₂ FET with small hysteresis by using atomic layer deposition Al₂O₃ as gate insulator," *ECS Solid State Lett.*, vol. 3, no. 10, pp. Q67–Q69, Aug. 2014, DOI: 10.1149/2.0111409ssl.
- [15] Y. Guo, X. Wei, J. Shu, B. Liu, J. Yin, C. Guan, Y. Han, S. Gao, and Q. Chen, "Charge trapping at the MoS₂-SiO₂ interface and its effects on the characteristics of MoS₂ metal-oxide-semiconductor field effect transistors," *Appl. Phys. Lett.*, vol. 106, no. 10, pp. 103109, Mar. 2015, DOI: 10.1063/1.4914968.
- [16] K.L. Ganapathi, S. Bhattacharjee, S. Mohan, and N. Bhat, "Highperformance HfO₂ back gated multilayer MoS₂ transistors," *IEEE Electron Device Lett.*, vol. 37, no. 6, pp. 797–800, Apr. 2016, DOI: 10.1109/LED.2016.2553059.

- [17] P. Bolshakov, P. Zhao, A. Azcatl, P.K. Hurley, R.M. Wallace, and C.D. Young, "Electrical characterization of top-gated molybdenum disulfide field-effect-transistors with high-k dielectrics," *Microelectron. Eng.*, vol. 178, pp. 190–193, Jun. 2017, DOI: 10.1016/j.mee.2017.04.045.
- [18] V. Huard, "Two independent components modeling for negative bias temperature instability," in *Proc. IEEE Int. Rel. Phys. Symp. (IRPS)*, May 2010, pp. 33–42, DOI: 10.1109/IRPS.2010.5488857.
- [19] D.S. Ang, Z.Q. Teo, T.J. Ho, and C.M. Ng, "Reassessing the mechanisms of negative-bias temperature instability by repetitive stress/relaxation experiments," *IEEE Trans. Device Mater. Rel.*, vol. 11, no. 1, pp. 19–34, Mar. 2011, DOI: 10.1109/TDMR.2010.2067216.
- [20] T. Grasser, "Stochastic charge trapping in oxides: from random telegraph noise to bias temperature instabilities," *Microelectron. Rel.*, vol. 52, no. 1, pp. 39–70, Jan. 2012, DOI: 10.1016/j.microrel.2011.09.002.
- [21] K.K.H. Smithe, C.D. English, S.V. Suryavanshi, and E. Pop, "Intrinsic electrical transport and performance projections of synthetic monolayer MoS₂ devices," *2D Mater.*, vol. 4, no. 1, pp. 011009, Dec. 2016, DOI: 10.1088/2053-1583/4/1/011009.
- [22] K.K.H. Smithe, S.V. Suryavanshi, M. Munoz-Rojo, A.D. Tedjarati, and E. Pop, "Low variability in synthetic monolayer MoS₂ devices," ACS Nano, vol. 11, no. 8, pp. 8456–8463, Jul. 2017, DOI: 10.1021/acsnano.7b04100.
- [23] C.D. English, G. Shine, V.E. Dorgan, K.C. Saraswat, and E. Pop, "Improved contacts to MoS₂ transistors by ultra-high vacuum metal deposition," *Nano Lett.*, vol. 16, no. 6, pp. 3824–3830, May 2016, DOI: 10.1021/acs.nanolett.6b01309.
- [24] M.J. Mleczko, R.L. Xu, K. Okabe, H.-H. Kuo, I.R. Fisher, H.-S.P. Wong, Y. Nishi, and E. Pop, "High current density and low thermal conductivity of atomically thin semimetallic WTe₂," ACS Nano, vol. 10, no. 8, pp. 7507–7514, Jul. 2016, DOI: 10.1021/acsnano.6b02368.
- [25] Yu.Yu. Illarionov, A.D. Smith, S. Vaziri, M. Ostling, T. Mueller, M.C. Lemme, and T. Grasser, "Bias-temperature instability in single-layer graphene field-effect transistors," *Appl. Phys. Lett.*, vol. 105, no. 14, pp. 143507, Oct. 2014, DOI: 10.1063/1.4897344.
- [26] T. Grasser, P.-J. Wagner, H. Reisinger, Th. Aichinger, G. Pobegen, M. Nelhiebel, and B. Kaczer, "Analytic modeling of the bias temperature instability using capture/emission time maps," in *Proc. IEEE Int. Electron Devices Meeting (IEDM)*, Dec. 2011, pp. 27.4.1–27.4.4, DOI: 10.1109/IEDM.2011.6131624.
- [27] R. Degraeve, M. Cho, B. Govoreanu, B. Kaczer, M.B. Zahid, J. Van Houdt, M. Jurczak, and G. Groeseneken, "Trap spectroscopy by charge injection and sensing (TSCIS): a quantitative electrical technique for studying defects in dielectric stacks," in *Proc. IEEE Int. Electron Devices Meeting (IEDM)*, Dec. 2008, pp. 1–4, DOI: 10.1109/IEDM.2008.4796812.
- [28] Yu.Yu. Illarionov, M. Waltl, G. Rzepa, J.-S. Kim, S. Kim, A. Dodabalapur, D. Akinwande, and T. Grasser, "Long-term stability and reliability of black phosphorus field-effect transistors," *ACS Nano*, vol. 10, no. 10, pp. 9543–9549, Oct. 2016, DOI: 10.1021/acsnano.6b04814.
- [29] Yu.Yu. Illarionov, T. Knobloch, M. Waltl, G. Rzepa, A. Posphischil, D. Polyushkin, M. Furchi, T. Mueller, and T. Grasser, "Energetic mapping of oxide traps in MoS₂ field-effect transistors," 2D Mater., vol. 4, no. 2, pp. 025108, Jun. 2017, DOI: 10.1088/2053-1583/aa734a.
- [30] C. Gong, L. Colombo, R.M. Wallace, and K. Cho, "The unusual mechanism of partial Fermi level pinning at metal-MoS₂ interfaces," *Nano Lett.*, vol. 14, no. 4, pp. 1714–1720, Mar. 2014, DOI: 10.1021/nl403465v.
- [31] H. Liu, M. Si, Y. Deng, A.T. Neal, Y. Du, S. Najmaei, P.M. Ajayan, J. Lou, and P.D. Ye, "Switching mechanism in single-layer molybdenum disulfide transistors: an insight into current flow across Schottky barriers," ACS Nano, vol. 8, no. 1, pp. 1031–1038, Dec. 2014, DOI: 10.1021/nn405916t.