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Heterogeneity and Efficiency in the Brain
Vijay Balasubramanian

Abstract—The brain carries out enormously diverse and com-
plex information processing operations to deal with a constantly
varying world on a power budget of about 12W. I argue that this
efficiency is achieved in part through the dedication of specialized
circuit elements and architectures to specific computational tasks,
in a hierarchy stretching from the scale of neurons to scale
of the entire brain, in sharp contrast to the conventional von
Neumann architectures. This article suggests that the heteroge-
neous computational repertoires of the brain are architectural
memories of efficient computational procedures that are learned
via evolutionary selection.

Index Terms—neuromorphic computation, visual processing,
dynamic circuit reorganization, hierarchical information repre-
sentation, circuit repertoires

I. INTRODUCTION

THE brain is an extremely complex computational engine.

Its 100 × 109 neurons and 1014 synapses are densely

connected so that a mm3 of volume can contain 4 km of

wire [1]–[3]. Energetically, the brain is the most expensive

tissue in the body – it is 2% of body weight, but 20% of

metabolic load, more expensive per gram than muscle when

you are working out, suggesting that there will be evolutionary

pressure towards computational efficiency [4]–[8]. On the

other hand, the brain consumes a mere 20W of power – about

the same as a refrigerator lightbulb [4], [5] – and uses this to

(nearly) beat supercomputers at chess, produce art and music,

store memories of a lifetime, experience emotions like love

and anger, learn from experience, and build skyscrapers and

nanoscale devices alike. How does it manage to do all this on

such a meagre budget, with sloppy biochemical circuits, and

a fraction of the component density that can be packed into a

microchip?

I argue here that a key lies in the heterogeneity and diversity

of circuit elements and architectures at every scale from

neurons to the whole brain [1], [9]. An economic analogy

is helpful – the specialization of occupations as human so-

cieties progress from hunter-gatherer to more complex forms

is thought to squeeze out greater efficiencies as individuals

become expert in specific tasks. In a like manner, I suggest, the

brain achieves its efficiencies by adapting its circuit elements

and architectures over evolutionary time, during development,

and via learning, to the structure of the natural world, the

underlying logic of computations and the cognitive tasks to

be performed. In this view, the bewildering repertoire of

neural types (more than 70 in the retina alone [10], [11]) and

architectures is a memory of computations that have predictive

value for behavior, learned over evolutionary time, encoded

in the genome and developmental program, and then shaped
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by experience-driven learning. These are memories of “proce-

dures” rather than “facts”, but are memories nevertheless.

In what follows I will try to support these assertions by

giving several examples. First, I will review how the diverse

components of the nervous system are organized in a hierarchy

of specialized modules, each dedicated to specific functions,

which interact together to produce animal behavior. Then I

will describe a general argument from information theory

that suggests why distributing function in this way conserves

resources. Next, I will consider in turn the functional logic of

a sensory system (the sense of sight) and a cognitive system

(the sense of place) in the brain. In each case, I will try to

argue that the structure of circuits can be understood as an

adaptation to efficiently process information under conditions

of constraint.

In this article, I will focus primarily on efficiency in the

sense of resource minimization. Of course, neural systems

have many other desiderata – they should represent infor-

mation in ways that are easy for the rest of the brain to

process, they must be quick enough to support behavior in

an uncertain and changing world, and they should be flexible,

adaptable and evolvable. Engineered systems dealing with

complex natural environments via adaptive responses and

self-organizing architectures will face the same challenges in

their functional organization. One could discuss how and to

what extent heterogeneity of components also serves these

goals, but given the space available I will focus largely on

how component diversity reduces the resources required for

computation. I will extrapolate from this argument in the

conclusion, and suggest that engineered computational devices

will need to escape from the hegemony of the von Neumann

architecture to achieve the sort of efficiency that the brain

shows us is possible.

II. HETEROGENEITY AND HIERARCHY IN THE BRAIN

Consider first the whole brain. In antiquity, the Egyptians

observed that construction workers who experienced localized

trauma to their skulls experienced specific sensory, motor or

cognitive deficits suggesting that the brain was the seat of the

mind (contrary to contemporary belief), and a localization of

function within the brain (see description of the Smith Papytus

in [12]). In the modern era, the idea of localization came to

the fore in the 19th century, with studies like those of Broca,

who showed through patient studies that speech processing is

specific to a particular small region of the cortex. Subsequent

work, in the following one and a half centuries, has firmly

established the idea of localization – in normal human brains

the various sensory, cognitive and motor functions are heavily

focused in specific brain areas. For example, visual stimuli

are processed in the occipital lobe in the back of the head,
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Fig. 1: Drawing of the feedforward circuitry of the retina

by Ramón y Cajal. In humans the photoreceptors (rods and

3 types of cones) feed into ∼ 10 types of bipolar cells

which carry out diverse computations and communicate by

analog signals. These feed into ∼ 20 types of ganglion cells

(the output cells of the retina that select visual features and

communicate them to the central brain as digital signals sent

over the optic nerve). This image leaves out the ∼ 40 types

of highly diverse inhibitory interneurons (horizontal cells and

amacrine cells) that run laterally and synapse with bipolar

cells and ganglion cells over many different spatial scales .

The interneurons serve many different computational functions

including carving out the features relevant for behavior (e.g. by

making responses of certain ganglion cells direction selective),

and adaptation to changing environmental conditions (e.g. by

dynamically changing the responses of retinal circuits to cope

with massive illumination differences between noon and dusk).

speech is processed by Broca’s area, motor control is exerted

by the motor cortex (a strip running down the middle of the

head from the top towards the ear), the hippocampus in the

mid-brain is critical for episodic memory, and planning and

decision-making involve the pre-frontal cortex in the forehead

[13]. Thus, the large-scale functions of the brain are organized

in interacting, specialized modules.

If we go down a scale and look at the circuit structure

within each area, we find further specialization. The visual

cortex is anatomically and functionally segregated into areas

V1 to V4, where V1 is mostly engaged in extracting low-level

image features such as edges, which are pooled in some as yet

unclear way to produce higher level features such as shape

elements in V4. More broadly, the cortex divides different

kinds of visual information into separate streams – e.g., the

dorsal stream up the back of the head processes motion, while

the ventral stream down the base of the cortex analyzes shapes.

Likewise, motor cortex is separated into regions responsible

for controlling muscles in different parts of the body – the

face is controlled by circuits mid-way down motor cortex, the

knee is controlled by circuits at the top. This is why a localized

stroke can damage control of a particular part of the body and

leave others alone.

We can look more closely at each of the regions and

examine the neurons and circuits that carry out the required

computations. To be specific, consider the retina, a light-

sensitive piece of the central brain that emerges from the

neural tube during fetal develpment and makes its way to the

front of the head. Starting with exquisite anatomical studies

by the great Ramón y Cajal (Fig. 1), we have come to know

that the retina achieves the basic task of converting light

into signals that are interpreted by cortex by implementing

an intricate, precisely wired three-layer circuit consisting of

over 70 distinct types of neurons [10], [11]. First, the rods

and cones (3 types in humans) transduce light into electrical

signals. These feed forward to ∼10 species of bipolar cells

carrying out various analog computations (e.g. selection of

bright spots vs. dark spots) that begin the process of feature

extraction. These in turn feed into ∼20 types of ganglion

cells whose axons form the optic nerve, and which signal

the local presence of visual features (e.g., bright/dark spots,

color, and directed motion) in digital voltage signals (so-called

“action potentials” or “spikes”). Running laterally between the

first and second feed-forward stages are a plethora of “inter-

neurons” – these circuit elements, generally inhibitory, carve

away irrelevant parts of the sensory input to extract the visual

features used for perception and to compute their strength.

All told there are over 70 types of circuit elements, each

carrying out specific computations, which can adapt to varying

environmental conditions like the overall light level (which

can change by 10 orders of magnitude between noon and

dusk). This sort of ordered architecture with a heterogeneous

repertoire of circuit elements is the norm in the brain [1], [14].

Thus, at each scale, from the whole brain to single cells,

neural circuits are composed of highly heterogeneous com-

ponents with specific functions, precisely coupled into cir-

cuits that aggregate hierarchically to produce animal behavior

(Fig. 2). In fact, we could pursue this theme into the sub-

cellular scale and discuss the varieties of neurotransmitters (i.e.

chemical messengers between neurons), receptors (i.e. sensors

of ions, neurotransmitters, hormones and other signals), and

other molecular components. Experience of life modifies these

circuits and rearranges connectivity at timescales from mil-

liseconds to years. This learning has an adaptive purpose, and

better enables the brain to carry out functions that benefit the

organism in light of past history. Thus, circuits in the brain

encode a procedural memory of the past, the better to predict

the future and guide action.

But why is there such enormous diversity in the compo-

nents? Why not have a small number of powerful computa-

tional units that take in a lot of data and flexibly compute

many sorts of things as in the von Neumann architecture
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Fig. 2: At every scale of organization from neurons to the

whole brain, neural circuits are composed of heterogeneous

components (indicated here as colored ovals) specialized to

carry out a limited portion of the overall task or computation.

The elements of this diverse functional repertoire communicate

with each other in precisely organized circuits laid out during

the development of the brain, or organized by experience-

dependent learning. In the sensory periphery (e.g. the retina),

the components of the functional repertoire include diverse

cells specialized to compute and communicate specific features

of the sensory input. In terms of the whole brain one might

similarly regard the different brain areas as functional modules

specialized to carry out particular algorithms and computations

efficiently, communicating the results across large-scale brain

networks to implement animal behavior.

which has been dominant in computer design? Alternatively,

why not have a gigantic, maximally connected network of

homogeneous units that learn, and holistically produce, the

brain’s functions in a grandly connectionist manner? Indeed,

great neuroscientists such as Camilo Golgi at the turn of the

20th century famously argued for the latter picture in a long-

running debate with Ramón y Cajal, who instead proposed

a picture of heterogeneous and localized computation. There

may be many factors driving the heterogeneity of components

and architectures, not least the default explanation in biology

for “why” something is as it is – evolution is history and

living things are full of evolutionary accidents. But evolution

is not just a random process – it involves natural selection

of fitter organisms. While the “objective function” of this

selection is not established, there is a case to be made that

the heterogeneity of circuit architectures and cell types in the

brain reduces the cost of computation.

To see this, consider the general structure of information

transmission by channels with a power constraint [15], [16].

We imagine a noisy channel which transmits an input signal S

as an output signal X. We imagine that X is transmitted as a

sequence of symbols drawn from an alphabet (x0, x1, · · ·xN )
with energetic costs E0 < E1 < · · ·EN . As a model of neu-

rons as information channels, x0 can represent silence (which

has a baseline cost E0 associated to protein synthesis and other

cellular functions), while x1 is a single action potential, x2 is

two action potentials and so on within a specified time bin.

Let I(S,X) = H(X) − H(X|S) be the mutual information

between S and X with H being the entropy of the indicated

quantities. On general grounds there is a law of diminishing

Fig. 3: Information Rate vs. Power for a channel where there

is baseline cost Emin for operating the channel and commu-

nication symbols cost energy to use. The information curve is

convex down indicating a law of diminishing returns – twice

the energy gives less than twice the information [15], [16].

Bits/Energy at any point on the curve is given by the slope of

a line from the origin to that point. Thus Information/Energy is

maximized at on operating point (marked R∗, E∗) determined

by the tangent from the origin. (Figure adapted from [15].)

returns – using twice the power increases the information rate

by less than a factor of two [15], [16] (Fig. 3). Thus, the

information/power ratio is maximized at an operating point

determined by the tangent from the origin to a point on the

Information vs. Power curve (Fig. 3). For neurons, power

consumption is directly related to the firing rate, suggesting

that it is beneficial from an information transmission point

of view to break up information into types that generate

information at a rate near this optimal operating point that

will be determined by the energetics of neural biochemistry

[1], [7]–[9], [15], [17]–[22], a point first emphasized in [17].

To illustrate this conclusion in a simple, concrete model,

imagine that a particular region of the brain must transmit

information at a rate of I bits/second in order to support

downstream computations and behavior. Assume that this

information is broken up into different “features” processed

by k distinct functional elements which act as independent

information channels. Assume that there is a law of diminish-

ing returns relating information rate (I) and cost (C) so that

I = b+ g(C) with d2g/dC2 < 0, as illustrated for an energy

cost function in Fig. 3. We can argue generally for a law

of diminishing returns as follows. Suppose you can transmit

information at a maximum rate I1 by paying a cost C1, and at

a maximum rate I2 > I1 by paying a cost C2 > C1. Then if

you are able to pay a cost Cm = (C1+C2)/2, you can at least

achieve an information rate (I1 + I2)/2 by transmitting with

a cost C1 half the time and with a cost C2 half the time. This

establishes that the maximum information rate at a cost Cm is

at least as big as (I1+I2)/2. Iterating this argument establishes

a law of diminishing returns relating information and cost.

We can write such a law of diminishing returns equivalently

in terms of the cost per unit time for communication in any

of these channels by writing C(I) = a + f(I) where a is a

baseline cost for maintaining the channel and f(I) is a concave

function so that d2f/dI2 > 0.
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We want to find a partition into k channels that minimizes

the total cost of transmitting information at a rate I . Since

we are taking the channels to be independent for this simple

demonstration, we have I =
∑k

i Ik and the total cost is the

sum of the costs of the individual channels C =
∑k

i=1
Ci.

Let us take the channels to be identical and neglect other

considerations like ease of downstream decodability. Then the

symmetry of the problem implies that the optimal solution will

have the the same information rate and cost in each channel.

So Ii = I/k and C = ka + kf(I/k). The optimum number

of channels is determined by setting dC/dk = a+ f(I/k)−
(I/k)f ′(I/k) = 0 where f ′ denotes the first derivative of

f . (Here, for simplicity of exposition, we are treating k as a

continuous variable which is adequate for our purpose if it

turns out that k ≫ 1.) We can write this equivalently as

I

k

[

d lnC(x)

dx

]

x=I/k

= 1 (1)

To get a sense for what this means we can examine the solution

in specific examples.

Consider a power-law cost C(x) = a+(bx)α for which the

solution to (1) is k = bI
√

(α− 1)/a. Note that: (a) a sharper

growth of the cost with information rate (larger α) increases

the optimum number of channels; (b) a larger baseline cost a
drives down the optimal number of channels. Now consider

an exponential cost, C(x) = aex/b. The optimal solution

in this case is k = I/b. So, rapid growth of the cost as a

function of the information rate (small b) increases the optimal

number of channels In this case, the baseline cost (a = C(0))
does not affect the optimum. As shown in these examples,

a law of diminishing returns relating information and cost

will drive the dispersion of information across a diversity of

channels that each operates at a lower rate. This analysis can

be generalized to include correlations between channels and

the features they encode, inhomogeneities in the properties

of channels encoding different features, and computational

constraints where some partitions of the total information into

easily decodable or computable chunks may also be desirable.

But the broad point holds that minimizing cost produces a

drive to partition the information stream and thus to diversity

of function in the brain.

This idea is harder to formalize in terms of computation as

opposed to information transmission. Nevertheless, the general

point here is that specialization tends to increase efficiency,

and this (partly) drives computational heterogeneity in the

brain. To show the usefulness of this way of thinking in

understanding the “whys” of neural circuit organization, I

will now discuss examples drawn from two very different

computational systems in the brain: the sense of sight and

the sense of place.

III. THE SENSE OF SIGHT

The previous section described the architecture of the retina

and the hierarchy of processing of the retinal output by the

visual cortex. By now, it is well established that many features

of this circuitry are adaptations – architectural memories, if

you will – that increase the efficiency of visual information

processing. Famously, Atteneave, Barlow and Laughlin [23]–

[25] argued that lateral connections in the retina are generally

inhibitory because, given a limited number of cells, bounded

bandwidth, and circuit noise, the retina faces pressure to

remove redundancies in its input in order to maximimize trans-

mitted information. Indeed, natural visual scenes have long-

range pairwise correlations of luminance and color [26]–[28],

and one can remove these in the retinal output by appropriately

structured lateral inhibition within retinal circuits [29], [30].

We can think of this powerfully in terms of resource minimiza-

tion. The retina must convey a certain amount of information

about light in the world to the brain. If this information is

transmitted redundantly by neurons processing different parts

of an image, the number of cells or their bandwidth (maximum

spike firing rate) will have to increase with the redundancy,

incurring costs including increased energy consumption. Thus,

redundancy should be reduced to minimize cost, requiring

a class of circuit elements (inhibitory interneurons) tasked

with remodeling the information representation to remove

redundancy.

A more refined version of this argument recognizes that

neurons are noisy, and thus redundancy in the retina can

support reliable decoding by downstream cortical processes.

Quantitatively evaluating this tradeoff gives accurate predic-

tions of the relative range over which the interneurons should

provide inhibition relative to the angular resolution of the

retinal output neurons [29], [30]. Likewise, the structure of

the retinal ganglion cell mosaic and the relative spacing

of cells is accurately reproduced [31], [32]. In the primary

visual cortex, which receives and processes the retinal output,

researchers have further predicted the functional properties

of cells (e.g. edge detection) by using using Independent

Component Analysis to require that different circuit elements

should be informationally independent (and not just pairwise

decorrelated) [33]–[35]. These authors have emphasized that

this sort of redundancy reduction through the carefully se-

lection of circuit elements also leads to sparse information

representations (i.e. fewer firing neurons, with lower spike

rates) and hence to lower power consumption.

But what of the overall diversity of retinal circuit compo-

nents? Can the particular functional repertoire of excitatory

principal cells (the 3 cone types, the ∼10 bipolar types in the

second layer, and the ∼20 ganglion cell types in the output

layer) be explained in terms of circuit efficiency? Large survey

studies have constructed an information budget showing that

the bits in the retinal output are broadly distributed across ∼ 20
neural types which all have similar firing rates when respond-

ing to natural movies (Fig. 4; [36], [37]) despite their very

different functional roles (ranging from contrast detection to

color detection to motion detection in the cardinal directions).

This suggests that the visual input has been carved up into

features chosen in such a way that all the output components

lie at a similar (perhaps maximally efficient) operating point

on the information vs. power curve for neurons (Fig. 3; [15],

[16]). A challenge in really settling this point is that the visual

features must also be selected to effectively support visual

behaviors, and the high-level computations needed to support

the repertoire of visual behaviors are not well-understood. But
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Fig. 4: Information traffic out of the retina is broadly dis-

tributed across the many types of output channels which are

selective for different visual features shown here from a survey

in guinea pig (adapted from [9], [36]. Types of BT = Brisk-

transient (high peak rate, transient firing, ON and OFF types

respond to onset and offset of spots of light); BS = Brisk-

Sustained (higher peak rate, sustained firing, ON and OFF

types respond to onset and offset of spots of light); ON

DS = Direction Selective, responds to onset; ON-OF DS =

Direction Selective, responds to onset and offset, LE = Local

Edge (responds to local edges in images); Sluggish = diverse

lower peak firing rate types. Responding to natural images

individual cells of each type send, on average, similar amounts

of information to the brain (9-13 bits/s; 1.9-2.2 bits/spike)

suggesting the selection of an efficient operating point given

the neural device characteristics.

we can ask and answer a simpler question precisely: what is

the best way to distribute resources over the experimentally

measured computational repertoire of the retina (3 types of

input channels (cones) for daylight vision and ∼20 types of

output channels) in order to maximize information or minimize

cost?

This question can be answered precisely by measuring

the statistics and information content of the visual input,

and the properties of the circuit elements, and then asking

how to maximize transmitted information given a fixed total

number of components or total cost. Equivalently, we can

fix the amount of information that is required and minimize

the number of components. Suppose, for example, that we

have a budget of N photoreceptors, and that these can be

long (L), medium (M) or short (S) wavelength sensitive as

in the human eye. What fraction of each kind should we

have? Given the known cone spectral sensitivities and noise

properties, and a measured distribution of light in different

spectral bands of an ensemble of natural images [28], we can

evaluate what sorts of cone mosaics will maximize chromatic

information transmission. This maximization yields a surprise

– it seems that the relative proportions of L and M cones

are largely irrelevant over a 7-fold range, but the fraction

of S cones should be less than 10% because there is less

visual information in the blue wavelengths after filtering by

the medium and pigments in the eye [38]. Satisfyingly, recent

anatomical measurements have shown that S cones are rare

(less than 6% in most mammals) and that there is massive

variability in the L/M cone ratios between humans with normal

color vision [39].

The previous example was from the sensor layer of the

visual system. What about circuits further downstream? Con-

sider the retinal ganglion cells, the output cells of the retina,

two synapses downstream from the photoreceptors. These cells

complete the extraction of elementary visual features and send

these to the central brain. Suppose we have a budget of N
ganglion cells. How many should we invest in each ganglion

cell type? To simplify, let us just consider two channels – ON

cells, which detect bright spots, and OFF cells, which detect

dark spots. Here “bright” and “dark” are defined relative to the

near background. A good model of the cellular response is to

image a center-surround difference-of-Gaussians filter of an

image: F (~x0) =
∫

d~xL(~x) [Gc(~x− ~x0)−Gs(~x− ~x0] where

L(~x) is the luminance at point ~x, and Gc and Gs are con-

centric, unit-normalized Gaussians with standard deviations

σc < σs. Where F (~x0) > 0, an ON cell responds, and where

F (~x)0) < 0, and OFF cell responds, with a firing rate given

by a sigmoidal function of the filter response (Fig. 5). If we

have N cells, how many of them should be ON and how many

of them should be OFF?

To answer this question we need to know two key facts

about natural images: (1) the distribution of light is highly

skewed, aproximately log-normal, with a peak at low in-

tensities and a heavy tail towards high intensities [40]; (2)

there are long-range, scale-invariant correlations of luminance

between pairs of points (the Fourier power spectrum scales as

1/|~k|2 where ~k is the Fourier wavenumber [26], [27]). The

skewed distribution implies that the mean luminance exceeds

the median. Now, the average light intensity in a small central

region will tend to be closer to the median, and hence will

be lower than the average intensity in a larger surrounding

region, which will be closer to the mean. The scale-invariant

correlations imply that this difference between average central

and average surrounding illumination will persist across all

visual angles. So we can conclude that there are more dark

spots (defined in the difference-of-Gaussians manner described

above) in natural images. Given this fact, it is easy to see

that an optimal retina should have more OFF cells. Consider

the case N = 1, for example – if the budget only allows

one cell, an OFF cell is a better investment as it is more

likely to respond. A quantitative prediction can be made

by constructing a physiologically realistic model of ganglion

cell responses that approximately mimics the response range,

response threshold, and noise properties of real ON and OFF

cells. The analysis predicts that the typical vertebrate retina

should have ∼1.7 times as many OFF cells as ON cells, if it

is efficient in its construction [41]. This prediction is confirmed

by anatomy and physiology in many species (e.g., [42]).

Above, we discussed two examples in the visual periphery

where circuit resources are seen to be committed to increase

the efficiency of information processing. But what of the

circuit repertoire of the visual cortex? Recent work has demon-

strated a detailed relation between the perceptual salience

of certain classes of visual textures (i.e. detection thresholds

against a background of white noise), and the variance of the

same textural patterns across patches of natural scenes [43],
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(a) ON vs OFF cells (b) Cross-section of a Difference-
of-Gaussians filter

Cones

On

h

h

h= horizontal cell

excitatory

inhibitory

Synapses

(c) Schematic of circuit making an ON cell

Fig. 5: A basic division in the visual system is between ON

cells and OFF cells that respond to local contrast in images.

ON cells respond to bright spots as compared to nearby

surrounding region, while OFF cells respond to dark spots

as compared to the nearby surround. ON and OFF cells can

be simply modeled as Difference-of-Gaussian filters of images

where ON cells respond when the filter response is positive

and OFF cells respond when the filter response is negative.

Schematically, an ON cell is built by feeding the responses of

light sensors (cones) to the cell through an excitatory central

pathway and through an inhibitory peripheral pathway. In

the retina, the latter is built by specialized inhibitory circuit

elements, the horizontal cells. The image is taken from the

UPenn Natural Image Database [28].

[44]. Specifically, the higher the natural variance, the lower the

perceptual threshold. This research addressed visual behavior

rather than neural circuits, but a natural implementation of

the variable threshold for different textures is to have more

neurons and circuit mechanisms invested in processing the

textural features of natural scenes that are more variable

between image patches, and hence more informative about

them. This is precisely what would be predicted by the

efficient distribution of circuit resources in the cortical context

where sampling limitations in each retinotopic patch lead to

significant detection noise for complex patterns [44]. The basic

intuition for this is that when input noise is limiting, signals

with larger variance can be more reliably detected, and so

circuit resources should be preferentially devoted to them

[44]–[47].

All of these examples strongly suggest tuning of visual

circuit architecture to the structure of natural images and the

resource constraints of neural computation. Can the distri-

bution of information traffic over all the ∼20 retinal output

channels be understood in this way? This is a subject of

ongoing research. There is also evidence that circuits in the

retina dynamically reorganize to perform different functions

depending on environmental circumstances – for example, the

rod-driven receptor pathway that is active at low light uses

specialized interneurons to to transfer information over into

circuits that are normally driven by cones during daylight, thus

re-using already committed circuitry [48]. Stepping back, the

conventional view of high level visual processing describes a

hierarchy of processing levels localized in distinct brain areas

that extract ever more abstract visual features. For example,

primary visual cortex (V1) extract edges that are composed

into corners and other elementary shape features in V4, and

then further composed into shape detectors in the inferior

temporal cortex (IT). In fact, in primates, a sub-region of

IT, the fusiform face area, even has specialized cells that

respond to individual faces. There is an emerging view that

this hierarchy exists to efficiently exploit the inherently object-

based nature of visual images – i.e. they are built as occluding

compositions of physical things that have continuity over time.

In this view, the invariant objects (which are the things of

behavioral interest) can be efficiently computed and sparsely

represented via hierarchical composition of features that are

appropriately adapted at each representational scale. In the

context of the brain, this requires commitment of a hetero-

geneous repertoire of specific cell types and circuits at each

level of the visual hierarchy. This diversity enables sparsity in

the representation and will thus allow lower activity levels and

power consumption [7], [15], [17]–[19], [36]. Furthermore,

following intuitions coming from the study of Support Vector

Machines, one might expect that sparse, high-dimensional

representations will allow higher-order computations of invari-

ant visual percepts (e.g. “grandmother”) to be achieved more

easily by simple (and thus less expensive) linear operations

[49].

IV. THE SENSE OF PLACE

The idea of efficient computation has a long history in the

sensory periphery, but what about circuits supporting more

complex cognitive processes? Recent findings suggest that

some of the underlying circuits might also be organized to

efficiently exploit neural resources. For example, there is

evidence that neurons can accumulate the log likelihood of

events that might have happened in the world in their firing

rates, with decisions ensuing when the likelihood reaches some

threshold [50]. Following on this, psychologists and cognitive

scientists have now presented significant evidence that human

behavior can be Bayes-optimal given priors derived from

experience [51]. These ideas and results concern the outcomes

of neurally-based computations. Are the circuit architectures

themselves efficient in the sense of conserving resources?

Cognitive circuits have been less studied than sensory ones

because of the experimental difficulties of accessing and
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Fig. 6: Representing place in the grid system (adapted from [52]). (A) Grid cells (small triangles) in the medial entorhinal

cortex (MEC) respond when the animal is in a triangular lattice of physical locations (red circles) [53], [54]. The scale of

periodicity (the “grid scale”, λi) and the size of the regions evoking a response above a noise threshold (the “grid field width”,

li) vary modularly along the dorso-ventral axis of the MEC [54]. Grid cells within a module vary in the phase of their spatial

response, but share the same period and grid orientation (in two dimensions) [55]. (B) A simplified binary grid scheme for

encoding location along a linear track. At each scale (λi) there are two grid cells (red vs. blue firing fields). The periodicity

and grid field widths are halved at each successive scale. (C) The binary scheme in (B) is ambiguous if the grid field width at

scale i exceeds the grid periodicity at scale i+1. E.g., if the grid fields marked in red respond at scales i and i+1, the animal

might be in either of the two marked locations. (D) The grid system is composed of discrete modules, each of which contains

neurons with periodic “tuning curves”, and varying phase, in space. Dashed lines of a given color represent the firing rate

of a given grid cell when the animal at a given location. (E) For a simple Winner-Take-All decoder which decodes location

based on the most active cell in each module of the grids in panel D, decoded position will be ambiguous unless li ≤ λi+1,

analogously to panel C (see text). Variants of this limitation occur in other decoding schemes.

measuring them. However, considerable recent effort has been

invested in uncovering the neural basis of the “sense of place”,

i.e. an animal’s ability to know where it is within a familiar

environment. “Knowing” where one is implies the existence of

an internal map of location. How could a population of neurons

internally encode the physical location of an animal? Consider

an animal living in an 8m linear track and requiring spatial

precision of 1m to support its behavior. The animal could

achieve the required resolution in a unary place coding scheme

by having 8 neurons tuned to respond when the animal is in

1m wide, non-overlapping regions. Consider an alternative,

the hierarchical binary grid coding scheme in Fig. 6B where

neurons are tuned to respond if the animal is in one of a

periodic of array of locations. Here the two neurons in the

largest module have periods λ1 = 8m and tuning curves of

width l1 = 4m so that their responses just indicate the left

and right halves of the track. The pairs of neurons in the

next two modules have periods that are successively halved

λ2 = 4m and λ3 = 2m and grid proportionally smaller

field widths l2 = 2m and l3 = 1m respectively. These pairs

successively localize the animal into 2m and 1m bins. An

animal’s location is unambiguously reported by the firing of

three neurons, one at each scale of representation. All told only

6 neurons are required in the binary grid coding scheme, less

than in the unary scheme. This suggests that grid schemes that

integrate multiple scales of representation can encode space

more efficiently, i.e. with fewer neural resources.

Of course many animals move in two dimensional en-

vironments, and some (like bats, birds and fish) move in

three dimensions. We can generalize the simple grid coding

scheme described above to d-dimensions by imagining that

each neuron responds if the animal is in a location that lies

within a rectangular lattice of bins. For example, consider

a two-dimensional 8m × 8m arena where we must resolve

location in 1m×1m bins. In a unary place coding scheme we

dedicate one neuron to respond when in the animal is in each

distinct bin. In an alternative binary grid coding scheme, at

the largest scale, we can imagine four neurons each encoding

a quadrant (i.e. neurons with a response periodicity of 8m in

the x and y directions, tuned to respond in 4m × 4m bins,

thus giving a single response region in an 8m × 8m arena).

At the next scale, we imagine four more neurons that sub-

divide each quadrant into four (i.e. they respond in 2m× 2m
bins with a period of 4m in each cardinal direction). Finally,

we consider a third scale with 1m × 1m bins and a 2m
period (Fig. 6). As in our one-dimensional example, the firing

of neurons at each of these three scales of representation is

needed to resolve position unambiguously, but the binary grid

scheme achieves the same resolution with fewer neurons than

the unary scheme (12 vs. 64 in this example), again suggesting

that a grid-like multi-scale representation of position would be

more efficient for the brain [52], [56]–[59]. In general a grid

scheme simply needs diverse tuning curves distributed over

modules with different periodicities defined on some lattice,
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and need not have any particular relation imposed between the

different modules.

A priori the abstraction and seeming complexity of grid

schemes make it seem unlikely that the brain would implement

a grid-like system for encoding location, even if it is more

efficient in consumption of resources. Remarkably, however, a

potential locus of such a multi-scale cognitive map of location

was recently discovered in a structure known as the medial

entorhinal cortex (MEC) [53], [54]. When rats freely explore

a two dimensional open environment, individual “grid cells”

in the MEC display spatial firing fields that form a periodic

triangular grid which tiles space (Fig. 6A). The scale of grid

fields varies systematically along the dorso-ventral axis of the

MEC (Fig. 6A) [54]. The grids are partly formed on the

basis of path integration inside the animal’s brain, but are

anchored to sensory cues from the environment [60]. They

are maintained even in darkness and, if the environment is

slowly deformed, the grid pattern deforms with it [54], [61].

It was shown that grid cells are organized in discrete modules

within which the cells share the same lattice orientation and

periodicity, but vary randomly in phase [54], [55].

Is the grid coding scheme implemented by the entorhinal

cortex efficient in the use of neural resources? To test this, we

can follow [52] to formalize the problem as follows (Fig. 6A):

consider a hierarchy of modules where all the neurons in

module i have the same period λi (λ1 > λ2 · · ·λn). In each

module, the grid firing fields (i.e. the connected spatial regions

that evoke firing) are compact (with a diameter denoted li)
after thresholding for activity above the noise level. Within

any module, grid cells have a variety of spatial phases so

that at least one cell will respond at any physical location

(Fig. 6B,D). Grid modules with smaller field widths li provide

more local spatial information than those with larger scales.

However, this increased spatial precision comes at a cost: the

correspondingly smaller periodicity λi of these modules leads

to increased ambiguity since there are more grid periods within

a given spatial region. Thus, there will be a tradeoff between

precision and ambiguity. Finally, consider Fig. 6C where the

cells with the grid fields marked in red respond at scales i and

i+ 1. Then the animal might be in either of the two marked

locations. Avoiding ambiguity at each scale of representation

requires that λi+1, the period at scale i + 1, must exceed li,
the grid field width at scale i.1

How should a grid system be organized to minimize the

resources required to represent location unambiguously with a

given resolution? Consider a simple one dimensional grid sys-

tem. If d cells respond above the noise threshold at each point,

the number of grid cells ni in module i will be ni = dλi/li
and the total number of grid cells is N =

∑m
i=1

dλi

li
where m

is the number of grid modules. Now imagine a decoder which

considers the animal as localized within the grid fields of the

most responsive cell in each module. The smallest interval

that can be resolved in this way will be lm. We therefore

quantify the resolution of the grid system (the number of

1Theoretically, one could resolve the ambiguity in Fig. 6C by combining
the responses of many grid modules with incommensurate periods [56], [57],
but this requires a complex readout that examines all the grid modules at the
same time that is anatomically disfavored [62], [63].

spatial bins that can be resolved) as the ratio of the largest

to the smallest scale, R1 = λ1/lm, which we assume to

be large and fixed by the animal’s behavior. In terms of the

period ratios ri = λi/λi+1, the resolution is R1 =
∏m

i=1
ri,

where we also defined rm = λm/lm. Unambiguous decoding

requires that li ≤ λi+1 (Fig. 1C,E), or, equivalently, λi

li
≥ ri.

To minimize N = d
∑

i λi/li, all the λi

li
should be as small

as possible; so this fixes λi

li
= ri. Thus we are reduced to

minimizing the sum N = d
∑m

i=1
ri over the parameters ri,

while fixing the product R1 =
∏

i ri. Because this problem

is symmetric under permutation of the indices i, the optimal

ri turn out to all be equal, allowing us to set ri = r. This is

our first prediction: (1) the ratios between adjacent periods

will be constant. The constraint on resolution then gives

m = logr R, so that we seek to minimize N(r) = d r logr R1

with respect to r: the solution is r = e (Fig. 2E; Supplementary

Information). This gives a second prediction: (2) the ratio of

adjacent grid periods should be close to r = e. Repeating

this analysis in two dimensions (where resolution will be

set by a ratio of areas λ2
1/l

2
m), predicts a constant period

ratio of
√
e between adjacent modules, each arranged in a

triangular lattice, for a grid system that minimizes the number

of neurons required to achieve a given resolution [52]. The

analysis above made various simplifying assumptions, but the

result is robust to relaxing these conditions [52]. Amazingly,

this prediction is precisely confirmed by experiments [55], and

ongoing experiments will test the predictions for the three

dimensional grid system (a scale ratio of e1/3) in bats [64].

The purpose of this detailed discussion was to demonstrate

the intricacy of the considerations involved in determining

the most efficient computational architectures to solve even

a simple problem like representation of an animal’s location.

Here the most parsimonious solution in terms of neuron num-

ber involved a heterogeneous population of neurons organized

in modules with very different tuning properties to spatial

location. These diverse modules then jointly represent spatial

location. The fact that evolution has produced circuits that

implement these architectures suggests a selective pressure

for efficiency which reduces, where possible, the number of

circuit elements involved in a computation. Doing this requires

specializing the architectures to the specific task that must be

performed (as in the grid system illustrated above) and then

organizing interactions between such special-purpose circuits.

Of course, there may be constraints on a neural code that

preclude an organization which would nominally be more effi-

cient. For example, in the sensory periphery light is sensed by

single molecules that capture photons. Likewise the pressure

waves forming sound are naturally sensed by devices (hair

cells) that resonate at particular frequencies. In both these

cases the biophysics of sensing plays an important role in

determining the structure of circuits and the sensory code.

Furthermore, while an animal can only be in one place at

one time, natural sounds involve simultaneous excitations of

different amplitudes in all frequencies, while natural images

have light of different intensities at all locations in an image.

(Correlations between sound frequencies or image locations

reduce the dimensionality somewhat, but it is still very high.)
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As such, auditory and visual stimuli have a much higher

intrinsic dimension than the spatial location of an animal.

Similar considerations as above would predict that in an

optimal grid representation in d-dimensions the periods of

modules would scale by a factor of e1/d. For large d this

is very close to 1. There is no plausible biological mechanism

for implementation of a such a finely scaling grid given

the noisiness of neural responses and cellular developmental

mechanisms. A sub-optimal grid will have exponentially more

neurons than the optimal one, and, in view of this, an economi-

cal strategy for the auditory and visual systems might be to first

reduce the dimension of the stimuli by extracting informative

features. This is thought to happen in the auditory and visual

cortices. Perhaps there are later, as yet undiscovered, stages

of processing where a sufficiently low-dimensional subset of

these sensory modalities is manipulated in a grid-like way.

Readers familiar with spatial representation in the brain

may at this stage also wonder about the status of the so-

called “place cell” system in the hippocampus which seems to

resemble the much less efficient unary place code discussed

above. If the grid system is so efficient, why also have an

apparently less efficient “place system” implemented in a

different region of the brain, and what does this imply for the

general thesis of this paper that heterogeneous, special-purpose

architectures are the route to efficiency in computation? We

will turn to this and other related questions in the conclusion.

V. CONCLUSION: EFFICIENT CIRCUITS IN THE BRAIN

I have explained above that the brain has a hierarchical

organization from the scale of individual neurons to the scale

of “brain areas” tasked with specific functions like speech

production or motor control. At each level of this hierarchy

the brain implements a hetergeneous collection of functional

units (these might be individual neurons or they might be

circuit motifs) which are adapted to specific sub-computations

that must be performed. There are extensive feedforward and

feedback interactions between many levels of the hierarchy

and the different functional types at each scale. These interac-

tions sometimes lead theorists to treat the brain as an abstract

interconnected network of stereotyped units resembling some

of the early thinking in the field of neuroscience a century ago.

But, contrary to this view, it seems clear that separations of

timescales between levels of the computational hierarchy and

the differences of connectivity between the functional units

at each level imply that we should think of the brain as a

highly heterogeneous computational architecture, composed of

specialized components adapted to the procedures that must be

performed at each scale of computational analysis. Schemati-

cally, at a given computational scale we might represent this

as in Fig. 2 (where interactions between the functional units

and between levels of the computational hierarchy have been

left out).

I have argued that this heterogeneous architecture com-

posed of highly diverse and specialized components is partly

response for the enormous computational efficiency of the

brain. The argument is essentially economic – specialization

of function enables more efficient procedures that consume

fewer resources. Information theory also supports the view

that any given physical channel will have an optimal operating

point for maximizing bits/energy, and thus it would pay to

break up information into components that can be processed

at this optimal point (Fig. 3). In order to support this view I

gave extensive examples from the circuits that support sensory

processing in the visual system, and from the circuits that

support the cognitive sense of place. In each case we saw

a remarkable correspondence between predictions for circuit

architecture based on resource minimization and the actual

structure in the brain.

In this article we did not have space to ask how these well-

adapted and efficient circuits are built in brain. In some cases

(e.g. the retina) the wiring is established during development of

the brain and thus is encoded in circuit layout mechanisms that

are remembered in the genome. In other cases (e.g. the grid

system for spatial cognition that we discussed) a dynamical

mechanism of self-organization is at play, since animals de-

velop a new map in each new environment after ∼30 minutes

of exploration. This self-organized map is remembered, and

can be rapidly reloaded when an animal returns to a familiar

environment. In still other examples, experience-dependent

learning and synaptic plasticity is involved. Examples abound

of structural changes in the brain that follow learning and

repeated practice – new synapses are made and circuits can

adapt and change their functions. Indeed, partial recovery of

functions after the damage caused by strokes depends on such

dynamical reconfigurability that can reconstruct appropriately

specialized circuits to perform specific tasks. Of course, none

of this resembles a conventional von Neumann architecture

with a centralized, highly general CPU separated from remem-

bered data.

The examples that I discussed in this article were in compu-

tational domains that have an inherently low dimensionality.

For example, although natural images have very many pixels

and change constantly, the light coming to the eye from

different points and moments is highly correlated. Ultimately

this is because the visual world has an underlying structure

in terms of occluding objects that are in turn made of pieces

that move as wholes, and which in turn are identifiable in

terms of their edges and corners. This sort of structure makes

a relatively low-level feature-based representation possible and

it seems that the brain exploits this. Likewise, in the example

of the “sense of place”, physical location is limited by the

dimensionality of the world, the behavioral range of animal,

and the spatial resolution they require because of their size

and the size of the objects in the world that they interact with.

But there are also situations where the inherent dimension-

ality of a computational problem vastly exceeds the resources

available, at least naively. Consider the challenge faced by

the olfactory system. There are very many kinds of volatile

molecules (perhaps 105 of them) that can be mixed in different

concentrations to make odors. But the typical mammal has

only O(1000) odor receptors, and a fly only has O(100),

leading to a massive mismatch between the chemotopic di-

mensionality of odor space and the dimension of the receptor

space. How can animals possibly deal with with this situation?

A key insight is that a complex odor produced by an animal
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or plant will typical consist of only O(100) odorants. While

this allows O(10500) possible odors that could be relevant to

an animal’s behavior, it also implies that signals drawn from

the natural odor space have a particular kind of sparseness

– if we think of an odor as a vector in a 105 dimensional

chemical space, then a natural odor will have only k ≈ 100
non-zero entries. Because such “k-sparse” signals do not lie

in a fixed linear subspace, conventional techniques of di-

mensionality reduction such as Principal Component Analysis

will not work. However, recent theorems in the mathematics

of compressive sensing say that a random projection of the

high-dimensional data vector into an O(k) dimensional space

will preserve all the information in the original signal in a

manner that preserves distances between vectors and hence

their classifiability [65], [66]. This suggests that rather than

computing and representing “odor features”, efficiency would

drive the olfactory system to randomize its sensing. Perhaps

this explains why odor receptors sense molecules diffusely

(each receptor binds broadly to many odorants, and each

odorant binds to many receptors [67]). Perhaps this is also

why the projections to the olfactory cortex from the sensory

periphery, appear to all intents and purposes to be random

[68], in stark contrast to the highly organized representations

in the visual system that we discussed above.

Another example of randomization as a route to efficiency

might occur in the hippocampus, where neurons seem to

respond to a very high dimensional space of behavioral

contexts [69], [70]. Contexts are also k-sparse in the sense

discussed above – although the space of possible contextual

influences is enormous, in any given situation a relatively small

number appear. A particularly prominent context is spatial

location, and hence cells in the hippocampus often show

“place fields” – i.e. once an environment becomes familiar,

particular hippocampal cells will respond when the animal is in

a particular spatial location and this fixed map is remembered

and reloaded whenever the animal re-enters the environment.

Thus, until the discovery of grid cells (discussed above), the

hippocampus was thought to be the locus of the “sense of

place”. However, the place cells in this structure also respond

to many other kinds of context, e.g. sounds, smells and other

cues (see, e.g., [71]). Interestingly, like the projections to the

olfactory cortex, the axonal projections from other areas to the

hippocampus may also be disordered [69], [70]. In general,

animals or computers dealing with open environments face

this sort of situation because the space of possible contexts for

behavior is very large indeed, and randomization may provide

a route for efficiently representing information.

This special issue was dedicated to the role of memories

in information processing, particularly with reference to the

efficiency of computation. In this article, I have not discussed

memory in the conventional sense of remembering “facts”.

There many sorts of memory of this kind in the brain. For

example, there is working memory where Miller’s Law says

that a human can hold about seven numbers in his or her head

for a short duration in order to perform a task [72]. Then there

is short-term memory where subjects retain facts over hours

or days. Long-term memories are also stored in the brain,

sometimes associatively. Memories can be episodic (about

sequences) or declarative (about “facts”). Consistently with

the themes of this article, these different sorts of memory seem

to be implemented by distinct computational mechanisms and

circuits in the brain. Here, I have discussed circuit level

architectures as “memories” of computations that provide an

efficient procedural basis for the diverse goals faced by an

animal. In fact, such structural memories are also related to

“factual memories” – there are cells in the fusiform face area

of the primate brain that recognize and respond to specific

faces, and there are single cells in the temporal lobe that

can respond selectively to complex concepts (e.g. just to

the actress Jennifer Aniston, her voice, her name and other

attributes [73]). In any case, the main message here is that the

brain implements an enormously heterogeneous repertoire of

computational elements at each level of processing, and that

this likely has a bearing on the efficiency of the brain (∼12W

of power consumption) even while performing complex tasks

that are are difficult for powerful conventional computers.

Perhaps this provides a guide for the design of efficient

computational devices dealing with open environments.
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