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Abstract—Modern signal processing (SP) methods rely very
heavily on probability and statistics to solve challenging SP
problems. SP methods are now expected to deal with ever more
complex models, requiring ever more sophisticated computa-
tional inference techniques. This has driven the development
of statistical SP methods based on stochastic simulation and
optimization. Stochastic simulation and optimization algorithms
are computationally intensive tools for performing statistical
inference in models that are analytically intractable and beyond
the scope of deterministic inference methods. They have been
recently successfully applied to many difficult problems involving
complex statistical models and sophisticated (often Bayesian)
statistical inference techniques. This survey paper offers an
introduction to stochastic simulation and optimization methods
in signal and image processing. The paper addresses a variety of
high-dimensional Markov chain Monte Carlo (MCMC) methods
as well as deterministic surrogate methods, such as variational
Bayes, the Bethe approach, belief and expectation propagation
and approximate message passing algorithms. It also discusses a
range of optimization methods that have been adopted to solve
stochastic problems, as well as stochastic methods for deter-
ministic optimization. Subsequently, areas of overlap between
simulation and optimization, in particular optimization-within-
MCMC and MCMC-driven optimization are discussed.

Index Terms—Bayesian inference; Markov chain Monte Carlo;
proximal optimization algorithms; variational algorithms for
approximate inference.
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I. INTRODUCTION

Modern signal processing (SP) methods, (we use SP here to

cover all relevant signal and image processing problems), rely

very heavily on probabilistic and statistical tools; for example,

they use stochastic models to represent the data observation

process and the prior knowledge available, and they obtain

solutions by performing statistical inference (e.g., using maxi-

mum likelihood or Bayesian strategies). Statistical SP methods

are, in particular, routinely applied to many and varied tasks

and signal modalities, ranging from resolution enhancement of

medical images to hyperspectral image unmixing; from user

rating prediction to change detection in social networks; and

from source separation in music analysis to speech recognition.

However, the expectations and demands on the perfor-

mance of such methods are constantly rising. SP methods

are now expected to deal with challenging problems that

require ever more complex models, and more importantly,

ever more sophisticated computational inference techniques.

This has driven the development of computationally intensive

SP methods based on stochastic simulation and optimization.

Stochastic simulation and optimization algorithms are compu-

tationally intensive tools for performing statistical inference

in models that are analytically intractable and beyond the

scope of deterministic inference methods. They have been

recently successfully applied to many difficult SP problems

involving complex statistical models and sophisticated (of-

ten Bayesian) statistical inference analyses. These problems

can generally be formulated as inverse problems involving

partially unknown observation processes and imprecise prior

knowledge, for which they delivered accurate and insightful

results. These stochastic algorithms are also closely related

to the randomized, variational Bayes and message passing

algorithms that are pushing forward the state of the art in

approximate statistical inference for very large-scale prob-

lems. The key thread that makes stochastic simulation and

optimization methods appropriate for these applications is the

complexity and high dimensionality involved. For example in

the case of hyperspectral imaging the data being processed can

involve images of 2048 by 1024 pixels across up to hundreds

or thousands of wavelengths.

This survey paper offers an introduction to stochastic simu-

lation and optimization methods in signal and image process-

ing. The paper addresses a variety of high-dimensional Markov

chain Monte Carlo (MCMC) methods as well as deterministic

surrogate methods, such as variational Bayes, the Bethe ap-
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proach, belief and expectation propagation and approximate

message passing algorithms. It also discusses a range of

stochastic optimization approaches. Subsequently, areas of

overlap between simulation and optimization, in particular

optimization-within-MCMC and MCMC-driven optimization

are discussed. Some methods such as sequential Monte Carlo

methods or methods based on importance sampling are not

considered in this survey mainly due to space limitations.

This paper seeks to provide a survey of a variety of the

algorithmic approaches in a tutorial fashion, as well as to high-

light the state of the art, relationships between the methods,

and potential future directions of research. In order to set the

scene and inform our notation, consider an unknown random

vector of interest x = [x1, . . . , xN ]T and an observed data

vector y = [y1, . . . , yM ]T , related to x by a statistical model

with likelihood function p(y|x;θ) potentially parametrized by

a deterministic vector of parameters θ. Following a Bayesian

inference approach, we model our prior knowledge about x
with a prior distribution p(x;θ), and our knowledge about x
after observing y with the posterior distribution

p(x|y;θ) = p(y|x;θ)p(x;θ)
Z(θ)

(1)

where the normalising constant

Z(θ) = p(y;θ) =

∫
p(y|x;θ)p(x;θ) dx (2)

is known as the “evidence”, model likelihood, or the partition

function. Although the integral in (2) suggests that all xj are

continuous random variables, we allow any random variable

xj to be either continuous or discrete, and replace the integral

with a sum as required.

In many applications, we would like to evaluate the posterior

p(x|y;θ) or some summary of it, for instance point estimates

of x such as the conditional mean (i.e., MMSE estimate)

E{x|y;θ}, uncertainty reports such as the conditional vari-

ance var{x|y;θ}, or expected log statistics as used in the

expectation maximization (EM) algorithm [1–3]

θ(i+1) = argmax
θ

E{ln p(x,y;θ)|y;θ(i)} (3)

where the expectation is taken with respect to p(x|y;θ(i)).
However, when the signal dimensionality N is large, the inte-

gral in (2), as well as those used in the posterior summaries,

are often computationally intractable. Hence, the interest in

computationally efficient alternatives. An alternative that has

received a lot of attention in the statistical SP community is

maximum-a-posteriori (MAP) estimation. Unlike other poste-

rior summaries, MAP estimates can be computed by finding

the value of x maximizing p(x|y;θ), which for many models

is significantly more computationally tractable than numerical

integration. In the sequel, we will suppress the dependence on

θ in the notation, since it is not of primary concern.

The paper is organized as follows. After this brief introduc-

tion where we have introduced the basic notation adopted,

Section II discusses stochastic simulation methods, and in

particular a variety of MCMC methods. In Section III we

discuss deterministic surrogate methods, such as variational

Bayes, the Bethe approach, belief and expectation propaga-

tion, and provide a brief summary of approximate message

passing algorithms. Section IV discusses a range of opti-

mization methods for solving stochastic problems, as well

as stochastic methods for solving deterministic optimization

problems. Subsequently, in Section V we discuss areas of

overlap between simulation and optimization, in particular

the use of optimization techniques within MCMC algorithms

and MCMC-driven optimization, and suggest some interesting

areas worthy of exploration. Finally, in Section VI we draw

together thoughts, observations and conclusions.

II. STOCHASTIC SIMULATION METHODS

Stochastic simulation methods are sophisticated random

number generators that allow samples to be drawn from

a user-specified target density π(x), such as the posterior

p(x|y). These samples can then be used, for example, to

approximate probabilities and expectations by Monte Carlo

integration [4, Ch. 3]. In this section we will focus on Markov

chain Monte Carlo (MCMC) methods, an important class of

stochastic simulation techniques that operate by constructing

a Markov chain with stationary distribution π. In particular,

we concentrate on Metropolis-Hastings algorithms for high-

dimensional models (see [5] for a more general recent review

of MCMC methods). It is worth emphasizing, however, that we

do not discuss many other important approaches to simulation

that also arise often in signal processing applications, such as

“particle filters” or sequential Monte Carlo methods [6, 7], and

approximate Bayesian computation [8].

A cornerstone of MCMC methodology is the Metropolis-

Hastings (MH) algorithm [4, Ch. 7][9, 10], a universal machine

for constructing Markov chains with stationary density π.

Given some generic proposal distribution x∗ ∼ q(·|x), the

generic MH algorithm proceeds as follows.

Algorithm 1 Metropolis–Hastings algorithm (generic version)

Set an initial state x(0)

for t = 1 to T do
Generate a candidate state x∗ from a proposal q(·|x(t−1))
Compute the acceptance probability

ρ(t) = min

(
1,

π(x∗)
π(x(t−1))

q(x(t−1)|x∗)
q(x∗|x(t−1))

)
Generate ut ∼ U(0, 1)
if ut ≤ ρ(t) then

Accept the candidate and set x(t) = x∗

else
Reject the candidate and set x(t) = x(t−1)

end if
end for

Under mild conditions on q, the chains generated by Algo.

1 are ergodic and converge to the stationary distribution

π [11, 12]. An important feature of this algorithm is that

computing the acceptance probabilities ρ(t) does not require

knowledge of the normalization constant of π (which is often

not available in Bayesian inference problems). The intuition
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for the MH algorithm is that the algorithm proposes a stochas-

tic perturbation to the state of the chain and applies a carefully

defined decision rule to decide if this perturbation should

be accepted or not. This decision rule, given by the random

accept-reject step in Algo. 1, ensures that at equilibrium the

samples of the Markov chain have π as marginal distribution.

The specific choice of q will of course determine the

efficiency and the convergence properties of the algorithm.

Ideally one should choose q = π to obtain a perfect sampler

(i.e., with candidates accepted with probability 1); this is

of course not practically feasible since the objective is to

avoid the complexity of directly simulating from π. In the

remainder of this section we review strategies for specifying q
for high-dimensional models, and discuss relative advantages

and disadvantages. In order to compare and optimize the

choice of q, a performance criterion needs to be chosen. A

natural criterion is the stationary integrated autocorrelation

time for some relevant scalar summary statistic g : RN → R,

i.e.,

τg = 1 + 2

∞∑
t=1

Cor{g(x(0)), g(x(t))} (4)

with x(0) ∼ π, and where Cor(·, ·) denotes the correlation

operator. This criterion is directly related to the effective

number of independent Monte Carlo samples produced by

the MH algorithm, and therefore to the mean square error

of the resulting Monte Carlo estimates. Unfortunately drawing

conclusions directly from (4) is generally not possible because

τg is highly dependent on the choice of g, with different

choices often leading to contradictory results. Instead, MH

algorithms are generally studied asymptotically in the infinite-

dimensional model limit. More precisely, in the limit N → ∞,

the algorithms can be studied using diffusion process theory,

where the dependence on g vanishes and all measures of

efficiency become proportional to the diffusion speed. The

“complexity” of the algorithms can then be defined as the

rate at which efficiency deteriorates as N → ∞, e.g., O(N)
(see [13] for an introduction to this topic and details about

the relationship between the efficiency of MH algorithms and

their average acceptance probabilities or acceptance rates)1.

Finally, it is worth mentioning that despite the general-

ity of this approach, there are some specific models for

which conventional MH sampling is not possible because the

computation of ρ(t) is intractable (e.g., when π involves an

intractable function of x, such as the partition function of

the Potts-Markov random field). This issue has received a

lot of attention in the recent MCMC literature, and there are

now several variations of the MH construction for intractable

models [8, 14–16].

A. Random walk Metropolis-Hastings algorithms

The so-called random walk Metropolis-Hastings (RWMH)

algorithm is based on proposals of the form x∗ = x(t−1)+w,

1Notice that this measure of complexity of MCMC algorithms does not take
into account the computational costs related to generating candidate states and
evaluating their Metropolis-Hastings acceptance probabilities, which typically
also scale at least linearly with the problem dimension N .

where typically w ∼ N (0,Σ) for some positive-definite

covariance matrix Σ [4, Ch. 7.5]. This algorithm is one of

the most widely used MCMC methods, perhaps because it has

very robust convergence properties and a relatively low com-

putational cost per iteration. It can be shown that the RWMH

algorithm is geometrically ergodic under mild conditions on π
[17]. Geometric ergodicity is important because it guarantees

a central limit theorem for the chains, and therefore that the

samples can be used for Monte Carlo integration. However,

the myopic nature of the random walk proposal means that

the algorithm often requires a large number of iterations to

explore the parameter space, and will tend to generate samples

that are highly correlated, particularly if the dimension N is

large (the performance of this algorithm generally deteriorates

at rate O(N), which is worse than other more advanced

stochastic simulation MH algorithms [18]). This drawback can

be partially mitigated by adjusting the proposal matrix Σ to

approximate the covariance structure of π, and some adaptive

versions of RWHM perform this adaptation automatically. For

sufficiently smooth target densities, performance is further

optimized by scaling Σ to achieve an acceptance probability

of approximately 20%− 25% [18].

B. Metropolis adjusted Langevin algorithms

The Metropolis adjusted Langevin algorithm (MALA) is an

advanced MH algorithm inspired by the Langevin diffusion

process on R
N , defined as the solution to the stochastic

differential equation [19]

dX(t) =
1

2
∇ log π (X(t)) dt+ dW (t), X(0) = x0 (5)

where W is the Brownian motion process on R
N and x0 ∈

R
N denotes some initial condition. Under appropriate stability

conditions, X(t) converges in distribution to π as t → ∞,

and is therefore potentially interesting for drawing samples

from π. Since direct simulation from X(t) is only possible in

very specific cases, we consider a discrete-time forward Euler

approximation to (5) given by

X(t+1) ∼ N
(
X(t) +

δ

2
∇ log π

(
X(t)

)
, δIN

)
(6)

where the parameter δ controls the discrete-time increment.

Under certain conditions on π and δ, (6) produces a good

approximation of X(t) and converges to a stationary density

which is close to π. In MALA this approximation error is

corrected by introducing an MH accept-reject step that guaran-

tees convergence to the correct target density π. The resulting

algorithm is equivalent to Algo. 1 above, with proposal

q(x∗|x(t−1)) =

1

(2πδ)N/2
exp

(
−‖x∗ − x(t−1) − δ

2∇ log π
(
x(t−1)

) ‖2
2δ

)
.

(7)

By analyzing the proposal (7) we notice that, in addition to

the Langevin interpretation, MALA can also be interpreted as

an MH algorithm that, at each iteration t, draws a candidate
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from a local quadratic approximation to log π around x(t−1),

with δ−1
IN as an approximation to the Hessian matrix.

In addition, the MALA proposal can also be defined using

a matrix-valued time step Σ. This modification is related to

redefining (6) in an Euclidean space with the inner product

〈w,Σ−1x〉 [20]. Again, the matrix Σ should capture the

correlation structure of π to improve efficiency. For example,

Σ can be the spectrally-positive version of the inverse Hessian

matrix of log π [21], or the inverse Fisher information matrix

of the statistical observation model [20]. Note that, in a similar

fashion to preconditioning in optimization, using the exact full

Hessian or Fisher information matrix is often too computation-

ally expensive in high-dimensional settings and more efficient

representations must be used instead. Alternatively, adaptive

versions of MALA can learn a representation of the covariance

structure online [22]. For sufficiently smooth target densities,

MALA’s performance can be further optimized by scaling Σ
(or δ) to achieve an acceptance probability of approximately

50%− 60% [23].

Finally, there has been significant empirical evidence that

MALA can be very efficient for some models, particularly

in high-dimensional settings and when the cost of computing

the gradient ∇ log π(x) is low. Theoretically, for sufficiently

smooth π, the complexity of MALA scales at rate O(N1/3)
[23], comparing very favorably to the O(N) rate of RWMH

algorithms. However, the convergence properties of the con-

ventional MALA are not as robust as those of the RWMH

algorithm. In particular, MALA may fail to converge if the

tails of π are super-Gaussian or heavy-tailed, or if δ is chosen

too large [19]. Similarly, MALA might also perform poorly

if π is not sufficiently smooth, or multi-modal. Improving

MALA’s convergence properties is an active research topic.

Many limitations of the original MALA algorithm can now

be avoided by using more advanced versions [20, 24–27].

C. Hamiltonian Monte Carlo

The Hamiltonian Monte Carlo (HMC) method is a very

elegant and successful instance of an MH algorithm based

on auxiliary variables [28]. Let w ∈ R
N , Σ ∈ R

N×N

positive definite, and consider the augmented target density

π(x,w) ∝ π(x) exp(− 1
2w

TΣ−1w), which admits the de-

sired target density π(x) as marginal. The HMC method is

based on the observation that the trajectories defined by the

so-called Hamiltonian dynamics preserve the level sets of

π(x,w). A point (x0,w0) ∈ R
2N that evolves according

to the differential equations (8) during some simulation time

period (0, t]

dx

dt
= −∇w log π(x,w) = Σ−1w

dw

dt
= ∇x log π(x,w) = ∇x log π(x)

(8)

yields a point (xt,wt) that verifies π(xt,wt) = π(x0,w0).
In MCMC terms, the deterministic proposal (8) has π(x,w)
as invariant distribution. Exploiting this property for stochastic

simulation, the HMC algorithm combines (8) with a stochastic

sampling step, w ∼ N (0,Σ), that also has invariant distribu-

tion π(x,w), and that will produce an ergodic chain. Finally,

as with the Langevin diffusion (5), it is generally not possible

to solve the Hamiltonian equations (8) exactly. Instead, we use

a leap-frog approximation detailed in [28]

w(t+δ/2) = w(t) +
δ

2
∇x log π

(
x(t)

)
x(t+δ) = x(t) + δΣ−1w(t+δ/2) (9)

w(t+δ) = w(t+δ/2) +
δ

2
∇x log π

(
x(t+δ)

)
where again the parameter δ controls the discrete-time in-

crement. The approximation error introduced by (9) is then

corrected with an MH step targeting π(x,w). This algorithm

is summarized in Algo. 2 below (see [28] for details about the

derivation of the acceptance probability).

Algorithm 2 Hamiltonian Monte Carlo (with leap-frog)

Set an initial state x(0), δ > 0, and L ∈ N.

for t = 1 to T do
Refresh the auxiliary variable w ∼ N (0,Σ).
Generate a candidate (x∗,w∗) by propagating the current

state (x(t−1),w) with L leap-frog steps of length δ
defined in (9).

Compute the acceptance probability

ρ(t) = min

(
1,

π(x∗,w∗)
π(x(t−1),w)

)
.

Generate ut ∼ U(0, 1).
if ut ≤ ρ(t) then

Accept the candidate and set x(t) = x∗.

else
Reject the candidate and set x(t) = x(t−1).

end if
end for

Note that to obtain samples from the marginal π(x) it

is sufficient to project the augmented samples (x(t),w(t))
onto the original space of x (i.e., by discarding the auxiliary

variables w(t)). It is also worth mentioning that under some

regularity condition on π(x), the leap-frog approximation

(9) is time-reversible and volume-preserving, and that these

properties are key to the validity of the HMC algorithm [28].

Finally, there has been a large body of empirical evidence

supporting HMC, particularly for high-dimensional models.

Unfortunately, its theoretical convergence properties are much

less well understood [29]. It has been recently established

that for certain target densities the complexity of HMC scales

at rate O(N1/4), comparing favorably with MALA’s rate

O(N1/3) [30]. However, it has also been observed that, as

with MALA, HMC may fail to converge if the tails of π are

super-Gaussian or heavy-tailed, or if δ is chosen too large.

HMC may also perform poorly if π is multi-modal, or not

sufficiently smooth.

Of course, the practical performance of HMC also depends

strongly on the algorithm parameters Σ, L and δ [29]. The

covariance matrix Σ should be designed to model the correla-

tion structure of π(x), which can be determined by performing

pilot runs, or alternatively by using the strategies described

in [20, 21, 31]. The parameters δ and L should be adjusted
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to obtain an average acceptance probability of approximately

60%− 70% [30]. Again, this can be achieved by performing

pilot runs, or by using an adaptive HMC algorithm that adjusts

these parameters automatically [32, 33].

D. Gibbs sampling

The Gibbs sampler (GS) is another very widely used MH

algorithm which operates by updating the elements of x
individually, or by groups, using the appropriate conditional

distributions [4, Ch. 10]. This divide-and-conquer strategy

often leads to important efficiency gains, particularly if the

conditional densities involved are “simple”, in the sense that

it is computationally straightforward to draw samples from

them. For illustration, suppose that we split the elements of

x in three groups x = (x1,x2,x3), and that by doing so we

obtain three conditional densities π(x1|x2,x3), π(x2|x1,x3),
and π(x3|x1,x2) that are “simple” to sample. Using this

decomposition, the GS targeting π proceeds as in Algo. 3.

Somewhat surprisingly, the Markov kernel resulting from

concatenating the component-wise kernels admits π(x) as

joint invariant distribution, and thus the chain produced by

Algo. 3 has the desired target density (see [4, Ch. 10] for a

review of the theory behind this algorithm). This fundamental

property holds even if the simulation from the conditionals is

done by using other MCMC algorithms (e.g., RWMH, MALA

or HMC steps targeting the conditional densities), though this

may result in a deterioration of the algorithm convergence rate.

Similarly, the property also holds if the frequency and order of

the updates is scheduled randomly and adaptively to improve

the overall performance.

Algorithm 3 Gibbs sampler algorithm

Set an initial state x(0) = (x
(0)
1 ,x

(0)
2 ,x

(0)
3 )

for t = 1 to T do
Generate x

(t)
1 ∼ π

(
x1|x(t−1)

2 ,x
(t−1)
3

)
Generate x

(t)
2 ∼ π

(
x2|x(t)

1 ,x
(t−1)
3

)
Generate x

(t)
3 ∼ π

(
x3|x(t)

1 ,x
(t)
2

)
end for

As with other MH algorithms, the performance of the

GS depends on the correlation structure of π. Efficient sam-

plers seek to update simultaneously the elements of x that

are highly correlated with each other, and to update “slow-

moving” elements more frequently. The structure of π can be

determined by pilot runs, or alternatively by using an adaptive

GS that learns it online and that adapts the updating schedule

accordingly as described in [34]. However, updating elements

in parallel often involves simulating from more complicated

conditional distributions, and thus introduces a computational

overhead. Finally, it is worth noting that the GS is very useful

for SP models, which typically have sparse conditional inde-

pendence structures (e.g., Markovian properties) and conjugate

priors and hyper-priors from the exponential family. This often

leads to simple one-dimensional conditional distributions that

can be updated in parallel by groups [16, 35].

E. Partially collapsed Gibbs sampling

The partially collapsed Gibbs sampler (PCGS) is a recent

development in MCMC theory that seeks to address some of

the limitations of the conventional GS [36]. As mentioned

previously, the GS performs poorly if strongly correlated

elements of x are updated separately, as this leads to chains

that are highly correlated and to an inefficient exploration

of the parameter space. However, updating several elements

together can also be computationally expensive, particularly if

it requires simulating from difficult conditional distributions.

In collapsed samplers, this drawback is addressed by carefully

replacing one or several conditional densities by partially
collapsed, or marginalized conditional distributions.

For illustration, suppose that in our previous example the

subvectors x1 and x2 exhibit strong dependencies, and that as

a result the GS of Algo. 3 performs poorly. Assume that we

are able to draw samples from the marginalized conditional

density π(x1|x3) =
∫
π(x1,x2|x3)dx2, which does not

depend on x2. This leads to the PCGS described in Algo.

4 to sample from π, which “partially collapses” Algo. 3 by

replacing π(x1|x2,x3) with π(x1|x3).

Algorithm 4 Partially collapsed Gibbs sampler

Set an initial state x(0) = (x
(0)
1 ,x

(0)
2 ,x

(0)
3 )

for t = 1 to T do
Generate x

(t)
1 ∼ π

(
x1|x(t−1)

3

)
Generate x

(t)
2 ∼ π

(
x2|x(t)

1 ,x
(t−1)
3

)
Generate x

(t)
3 ∼ π

(
x3|x(t)

1 ,x
(t)
2

)
end for

Van Dyk and Park [36] established that the PCGS is always

at least as efficient as the conventional GS, and it has been

observed that that the PCGS is remarkably efficient for some

statistical models [37, 38]. Unfortunately, PCGSs are not as

widely applicable as GSs because they require simulating

exactly from the partially collapsed conditional distributions.

In general, using MCMC simulation (e.g., MH steps) within

a PCGS will lead to an incorrect MCMC algorithm [39].

Similarly, altering the order of the updates (e.g., by permuting

the simulations of x1 and x2 in Algo. 4) may also alter the

target density [36].

III. SURROGATES FOR STOCHASTIC SIMULATION

A. Variational Bayes

In the variational Bayes (VB) approach described in [40,

41], the true posterior p(x|y) is approximated by a density

q�(x) ∈ Q, where Q is a subset of valid densities on x. In

particular,

q�(x) = argmin
q∈Q

D
(
q(x)

∥∥p(x|y)) (10)

where D(q‖p) denotes the Kullback-Leibler (KL) divergence

between p and q. As a result of the optimization in (10)

over a function, this is termed “variational Bayes” because

of the relation to the calculus of variations [42]. Recalling

that D(q‖p) reaches its minimum value of zero if and only if
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p = q [43], we see that q�(x) = p(x|y) when Q includes all

valid densities on x. However, the premise is that p(x|y) is

too difficult to work with, and so Q is chosen as a balance

between fidelity and tractability.

Note that the use of D(q‖p), rather than D(p‖q), implies a

search for a q� that agrees with the true posterior p(x|y) over

the set of x where p(x|y) is large. We will revisit this choice

when discussing expectation propagation in Section III-E.

Rather than working with the KL divergence directly, it is

common to decompose it as follows

D
(
q(x)

∥∥p(x|y)) = ∫
q(x) ln

q(x)

p(x|y) dx = lnZ + F (q)

(11)

where

F (q) �
∫

q(x) ln
q(x)

p(x,y)
dx (12)

is known as the Gibbs free energy or variational free energy.

Rearranging (11), we see that

− lnZ = F (q)−D
(
q(x)

∥∥p(x|y)) ≤ F (q) (13)

as a consequence of D
(
q(x)

∥∥p(x|y)) ≥ 0. Thus, F (q) can

be interpreted as an upper bound on the negative log partition.

Also, because lnZ is invariant to q, the optimization (10) can

be rewritten as

q�(x) = argmin
q∈Q

F (q), (14)

which avoids the difficult integral in (2). In the sequel, we will

discuss several strategies to solve the variational optimization

problem (14).

B. The mean-field approximation

A common choice of Q is the set of fully factorizable

densities, resulting in the mean-field approximation [44, 45]

q(x) =
N∏
j=1

qj(xj). (15)

Substituting (15) into (12) yields the mean-field free energy

FMF(q) �
∫ [∏

j

qj(xj)
]
ln

1

p(x,y)
dx−

N∑
j=1

h(qj) (16)

where h(qj) � − ∫
qj(xj) ln qj(xj) dxj denotes the differen-

tial entropy. Furthermore, for j = 1, . . . , N , equation (16) can

be written as

FMF(q) = D
(
qj(xj)

∥∥gj(xj ,y)
)−∑

i�=j

h(qi) (17)

gj(xj ,y) � exp

∫ [∏
i�=j

qi(xi)
]
ln p(x,y) dx\j (18)

where x\j � [x1, . . . , xj−1, xj , . . . , xN ]T for j = 1, . . . , N .

Equation (17) implies the optimality condition

qj,�(xj) =
gj,�(xj ,y)∫
gj,�(x′

j ,y) dx
′
j

∀j = 1, . . . , N (19)

where q�(x) =
∏N

j=1 qj,�(xj) and where gj,�(xj ,y) is defined

as in (18) but with qi,�(xi) in place of qi(xi). Equation (19)

suggests an iterative coordinate-ascent algorithm: update each

component qj(xj) of q(x) while holding the others fixed. But

this requires solving the integral in (18). A solution arises

when ∀j the conditionals p(xj ,y|x\j) belong to the same

exponential family of distributions [46], i.e.,

p(xj ,y |x\j) ∝ h(xj) exp
(
η(x\j ,y)T t(xj)

)
(20)

where the sufficient statistic t(xj) parameterizes the family.

The exponential family encompasses a broad range of dis-

tributions, notably jointly Gaussian and multinomial p(x,y).
Plugging p(x,y) = p(xj ,y |x\j)p(x\j ,y) and (20) into (18)

immediately gives

gj(xj ,y) ∝ h(xj) exp
(
E{η(x\j ,y)}T t(xj)

)
(21)

where the expectation is taken over x\j ∼ ∏
i�=j qi,�(xi).

Thus, if each qj is chosen from the same family, i.e., qj(xj) ∝
h(xj) exp

(
γT
j t(xj)

) ∀j, then (19) reduces to the moment-

matching condition

γj,� = E
{
η(x\j ,y)

}
(22)

where γj,� is the optimal value of γj .

C. The Bethe approach

In many cases, the fully factored model (15) yields too gross

of an approximation. As an alternative, one might try to fit a

model q(x) that has a similar dependency structure as p(x|y).
In the sequel, we assume that the true posterior factors as

p(x|y) = Z−1
∏
α

fα(xα) (23)

where xα are subvectors of x (sometimes called cliques or

outer clusters) and fα are non-negative potential functions.

Note that the factorization (23) defines a Gibbs random field

when p(x|y) > 0. When a collection of variables {xn} always

appears together in a factor, we can collect them into xβ ,

an inner cluster, although it is not necessary to do so. For

simplicity we will assume that these xβ are non-overlapping

(i.e., xβ ∩ xβ′ = 0 ∀β �= β′), so that {xβ} represents a

partition of x. The factorization (23) can then be drawn as a

factor graph to help visualize the structure of the posterior, as

in Figure 1.

fa fb fc

x1 x2 x3 x4

}
fα(xα)

}
xβ

Fig. 1. An example of a factor graph, which is a bipartite graph consisting
of variable nodes, (circles/ovals), and factor nodes, (boxes). In this example,
xa = {x1, x2}, xb = {x1, x3, x4}, xc = {x2, x3, x4}. There are several
choices for the inner clusters xβ . One is the full factorization x1 = x1,
x2 = x2, x3 = x3, and x4 = x4. Another is the partial factorization
x1 = x1, x2 = x2, and x3 = {x3, x4}, which results in the “super node” in
the dashed oval. Another is no factorization: x1 = {x1, x2, x3, x4}, resulting
in the “super node” in the dotted oval. In the latter case, we redefine each
factor fα to have the full domain x (with trivial dependencies where needed).
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We now seek a tractable way to build an approximation q(x)
with the same dependency structure as (23). But rather than

designing q(x) as a whole, we design the cluster marginals,

{qα(xα)} and {qβ(xβ)}, which must be non-negative, nor-

malized, and consistent

0 ≤ qα(xα), 0 ≤ qβ(xβ) ∀α, β,xα,xβ (24)

1 =

∫
qα(xα) dxα 1 =

∫
qβ(xβ) dxβ ∀α, β (25)

qβ(xβ) =

∫
qα(xα) dxα\β ∀α, β ∈ Nα,xβ (26)

where xα\β gathers the components of x that are contained

in the cluster α and not in the cluster β, and Nα denotes the

neighborhood of the factor α (i.e., the set of inner clusters β
connected to α).

In general, it is difficult to specify q(x) from its cluster

marginals. However, in the special case that the factor graph

has a tree structure (i.e., there is at most one path from one

node in the graph to another), we have [47]

q(x) =

∏
α qα(xα)∏

β qβ(xβ)Nβ−1
(27)

where Nβ = |Nβ | is the neighborhood size of the cluster β.

In this case, the free energy (12) simplifies to

F (q) =
∑
α

D
(
qα

∥∥fα)+∑
β

(Nβ − 1)h(qβ)︸ ︷︷ ︸
� FB

({qα}, {qβ})
+const, (28)

where FB is known as the Bethe free energy (BFE) [47].

Clearly, if the true posterior {fα} has a tree structure,

and no constraints beyond (24)-(26) are placed on the cluster

marginals {qα}, {qβ}, then minimization of FB
({qα}, {qβ})

will recover the cluster marginals of the true posterior. But

even when {fα} is not a tree, FB
({qα}, {qβ}) can be used

as an approximation of the Gibbs free energy F (q), and

minimizing FB can be interpreted as designing a q that locally
matches the true posterior.

The remaining question is how to efficiently minimize

FB
({qα}, {qβ}) subject to the (linear) constraints (24)-(26).

Complicating matters is the fact that FB
({qα}, {qβ}) is the

sum of convex KL divergences and concave entropies. One op-

tion is direct minimization using a “double loop” approach like

the concave-convex procedure (CCCP) [48], where the outer

loop linearizes the concave term about the current estimate

and the inner loop solves the resulting convex optimization

problem (typically with an iterative technique). Another option

is belief propagation, which is described below.

D. Belief propagation

Belief propagation (BP) [49, 50] is an algorithm for comput-

ing (or approximating) marginal probability density functions

(pdfs)2 like qβ(xβ) and qα(xα) by propagating messages on

2Note that another form of BP exists to compute the maximum a posteriori
(MAP) estimate argmaxx p(x|y) known as the “max-product” or “min-
sum” algorithm [50]. However, this approach does not address the problem of
computing surrogates for stochastic methods, and so is not discussed further.

a factor graph. The standard form of BP is given by the sum-
product algorithm (SPA) [51], which computes the following

messages from each factor node fα to each variable (super)

node xβ and vice versa

mα→β(xβ) ←
∫

fα(xα)
∏

β′∈Nα\β
mβ′→α(xβ′) dxα\β (29)

mβ→α(xβ) ←
∏

α′∈Nβ\α
mα′→β(xβ). (30)

These messages are then used to compute the beliefs

qβ(xβ) ∝
∏

α∈Nβ

mα→β(xβ) (31)

qα(xα) ∝ fα(xα)
∏

β∈Nα

mβ→α(xβ) (32)

which must be normalized in accordance with (25). The

messages (29)-(30) do not need to be normalized, although

it is often done in practice to prevent numerical overflow.

When the factor graph {fα} has a tree structure, the BP-

computed marginals coincide with the true marginals after one

round of forward and backward message passes. Thus, BP on

a tree-graph is sometimes referred to as the forward-backward
algorithm, particularly in the context of hidden Markov models

[52]. In the tree case, BP is akin to a dynamic programming

algorithm that organizes the computations needed for marginal

evaluation in a tractable manner.

When the factor graph {fα} has cycles or “loops,” BP can

still be applied by iterating the message computations (29)-

(30) until convergence (not guaranteed), which is known as

loopy BP (LBP). However, the corresponding beliefs (31)-(32)

are in general only approximations of the true marginals. This

suboptimality is expected because exact marginal computation

on a loopy graph is an NP-hard problem [53]. Still, the answers

computed by LBP are in many cases very accurate [54].

For example, LBP methods have been successfully applied

to communication and SP problems such as: turbo decoding

[55], LDPC decoding [49, 56], inference on Markov random

fields [57], multiuser detection [58], and compressive sensing

[59, 60].

Although the excellent performance of LBP was at first

a mystery, it was later established that LBP minimizes the

constrained BFE. More precisely, the fixed points of LBP

coincide with the stationary points of FB
({qα}, {qβ}) from

(28) under the constraints (24)-(26) [47]. The link between

LBP and BFE can be established through the Lagrangian

formalism, which converts constrained BFE minimization to

an unconstrained minimization through the incorporation of

additional variables known as Lagrange multipliers [61]. By

setting the derivatives of the Lagrangian to zero, one obtains

a set of equations that are equivalent to the message updates

(29)-(30) [47]. In particular, the stationary-point versions of

the Lagrange multipliers equal the fixed-point versions of the

loopy SPA log-messages.

Note that, unlike the mean-field approach (15), the cluster-

based nature of LBP does not facilitate an explicit description

of the joint-posterior approximation q ∈ Q from (10). The

reason is that, when the factor graph is loopy, there is no
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straightforward relationship between the joint posterior q(x)
and the cluster marginals {qα(xα)}, {qβ(xβ)}, as explained

before (27). Instead, it is better to interpret LBP as an efficient

implementation of the Bethe approach from Section III-C,

which aims for a local approximation of the true posterior.

In summary, by constructing a factor graph with low-

dimensional {xβ} and applying BP or LBP, we trade the high-

dimensional integral qβ(xβ) =
∫
p(x|y) dx\β for a sequence

of low-dimensional message computations (29)-(30). But (29)-

(30) are themselves tractable only for a few families of {fα}.

Typically, {fα} are limited to members of the exponential

family closed under marginalization (see [62]), so that the

updates of the message pdfs (29)-(30) reduce to updates of

the natural parameters (i.e., η in (20)). The two most common

instances are multivariate Gaussian pdfs and multinomial

probability mass functions (pmfs). For both of these cases,

when LBP converges, it tends to be much faster than double-

loop algorithms like CCCP (see, e.g., [63]). However, LBP

does not always converge [54].

E. Expectation propagation

Expectation propagation (EP) [64] (see also the overviews

[62, 65]) is an iterative method of approximate inference that is

reminiscent of LBP but has much more flexibility with regards

to the modeling distributions. In EP, the true posterior p(x|y),
which is assumed to factorize as in (23), is approximated by

q(x) such that

q(x) ∝
∏
α

mα(xα) (33)

where xα are the same as in (23) and mα are referred to as

“site approximations.” Although no constraints are imposed

on the true-posterior factors {fα}, the approximation q(x) is

restricted to a factorized exponential family. In particular,

q(x) =
∏
β

qβ(xβ) (34)

qβ(xβ) = exp
(
γT
β tβ(xβ)− cβ(γβ)

)
, ∀β, (35)

with some given base measure. We note that our description

of EP applies to arbitrary partitions {xβ}, from the trivial

partition xβ = x to the full partition xβ = xβ .

The EP algorithm iterates the following updates over all

factors α until convergence (not guaranteed)

q\α(x) ← q(x)/mα(xα) (36)

q̂\α(x) ← q\α(x)fα(xα) (37)

qnew(x) ← argmin
q∈Q

D
(
q̂\α(x)

∥∥q(x)) (38)

mnew
α (xα) ← qnew(x)/q\α(x) (39)

q(x) ← qnew(x) (40)

mα(xα) ← mnew
α (xα) (41)

where Q in (38) refers to the set of q(x) obeying (34)-(35).

Essentially, (36) removes the αth site approximation mα from

the posterior model q, and (37) replaces it with the true factor

fα. Here, q\α is know as the “cavity” distribution. The quantity

q̂\α is then projected onto the exponential family in (38).

The site approximation is then updated in (39), and the old

quantities are overwritten in (40)-(41). Note that the right side

of (39) depends only on xα because qnew(x) and q\α(x) differ

only over xα. Note also that the KL divergence in (38) is

reversed relative to (10).
The EP updates (37)-(41) can be simplified by leveraging

the factorized exponential family structure in (34)-(35). First,

for (33) to be consistent with (34)-(35), each site approxima-

tion must factor into exponential-family terms, i.e.,

mα(xα) =
∏

β∈Nα

mα,β(xα) (42)

mα,β(xα) = exp
(
μT

α,βtβ(xβ)
)
. (43)

It can then be shown [62] that (36)-(38) reduce to

γnew
β ← argmax

γ

[
γT Eq̂\α{tβ(xβ)} − cβ(γ)

]
(44)

for all β ∈ Nα, which can be interpreted as the moment match-

ing condition Eqnew{tβ(xβ)} = Eq̂\α{tβ(xβ)}. Furthermore,

(39) reduces to

μnew
α,β ← γnew

β −
∑

α′∈Nβ\α
μα′,β (45)

for all β ∈ Nα. Finally, (40) and (41) reduce to γβ ← γnew
β

and μα,β ← μnew
α,β , respectively, for all β ∈ Nα.

Interestingly, in the case that the true factors {fα} are mem-

bers of an exponential family closed under marginalization, the

version of EP described above is equivalent to the SPA up to

a change in message schedule. In particular, for each given

factor node α, the SPA updates the outgoing message towards

one variable node β per iteration, whereas EP simultaneously

updates the outgoing messages in all directions, resulting in

mnew
α (see, e.g., [41]). By restricting the optimization in (39)

to a single factor qnew
β , EP can be made equivalent to the SPA.

On the other hand, for generic factors {fα}, EP can be viewed

as a tractable approximation of the (intractable) SPA.
Although the above form of EP iterates serially through

the factor nodes α, it is also possible to perform the updates

in parallel, resulting in what is known as the expectation
consistent (EC) approximation algorithm [66].

EP and EC have an interesting BFE interpretation. Whereas

the fixed points of LBP coincide with the stationary points of

the BFE (28) subject to (24)-(25) and strong consistency (26),

the fixed points of EP and EC coincide with the stationary

points of the BFE (28) subject to (24)-(25) and the weak
consistency (i.e., moment-matching) constraint [67]

Eq̂\α{t(xβ)} = Eqβ{t(xβ)}, ∀α, β ∈ Nα. (46)

EP, like LBP, is not guaranteed to converge. Hence, provably

convergence double-loop algorithms have been proposed that

directly minimize the weakly constrained BFE, e.g., [67].

F. Approximate message passing
So-called approximate message passing (AMP) algorithms

[59, 60] have recently been developed for the separable

generalized linear model

p(x) =
N∏
j=1

px(xj), p(y|x) =
M∏

m=1

py|z(ym|aT
mx) (47)
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where the prior p(x) is fully factorizable, as is the conditional

pdf p(y|z) relating the observation vector y to the (hidden)

transform output vector z � Ax, where A � [a1, ...,aM ]T ∈
R

M×N is a known linear transform. Like EP, AMP allows

tractable inference under generic3 px and py|z.

AMP can be derived as an approximation of LBP on the

factor graph constructed with inner clusters xβ = xβ for β =
1, . . . , N , with outer clusters xα = x for α = 1, . . . ,M and

xα = xα−M for α = M + 1, . . . ,M +N , and with factors

fα(xα) =

{
py|z(yα|aT

αx) α = 1, . . . ,M

px(xα−M ) α = M + 1, . . . ,M +N.
(48)

In the large-system limit (LSL), i.e., M,N → ∞ for fixed

ratio M/N , the LBP beliefs qβ(xβ) simplify to

qβ(xβ) ∝ px(xβ)N (xβ ; r̂β , τ) (49)

where {r̂β}Nβ=1 and τ are iteratively updated parameters.

Similarly, for m = 1, . . . ,M , the belief on zm, denoted by

qz,m(·), simplifies to

qz,m(zm) ∝ py|z(ym|zm)N (zm; p̂m, ν) (50)

where {p̂m}Mm=1 and ν are iteratively updated parameters.

Each AMP iteration requires only one evaluation of the mean

and variance of (49)-(50), one multiplication by A and AT ,

and relatively few iterations, making it very computationally

efficient, especially when these multiplications have fast im-

plementations (e.g., using fast Fourier transforms and discrete

wavelet transforms ).

In the LSL under i.i.d sub-Gaussian A, AMP is fully

characterized by a scalar state evolution (SE). When this SE

has a unique fixed point, the marginal posterior approximations

(49)-(50) are known to be exact [68, 69].

For generic A, AMP’s fixed points coincide with the

stationary points of an LSL version of the BFE [70, 71]. When

AMP converges, its posterior approximations are often very

accurate (e.g., [72]), but AMP does not always converge. In

the special case of Gaussian likelihood py|z and prior px, AMP

convergence is fully understood: convergence depends on the

ratio of peak-to-average squared singular values of A, and

convergence can be guaranteed for any A with appropriate

damping [73]. For generic px and py|z, damping greatly helps

convergence [74] but theoretical guarantees are lacking. A

double-loop algorithm to directly minimize the LSL-BFE was

recently proposed and shown to have global convergence for

strictly log-concave px and py|z under generic A [75].

IV. OPTIMIZATION METHODS

A. Optimization problem

The Monte Carlo methods described in Section II provide

a general approach for estimating reliably posterior proba-

bilities and expectations. However, their high computational

cost often makes them unattractive for applications involving

very high dimensionality or tight computing time constraints.

One alternative strategy is to perform inference approximately

3More precisely, the AMP algorithm [59] handles Gaussian py|z while the
generalized AMP (GAMP) algorithm [60] handles arbitrary py|z.

by using deterministic surrogates as described in Section

III. Unfortunately, these faster inference methods are not as

generally applicable, and because they rely on approximations,

the resulting inferences can suffer from estimation bias. As

already mentioned, if one focuses on the MAP estimator,

efficient optimization techniques can be employed, which are

often more computationally tractable than MCMC methods

and, for which strong guarantees of convergence exist. In many

SP applications, the computation of the MAP estimator of

x can be formulated as an optimization problem having the

following form

minimize
x∈R

N
ϕ(Hx,y) + g(Dx) (51)

where ϕ : RM × R
M → ]−∞,+∞], g : RP → ]−∞,+∞],

H ∈ R
M×N , and D ∈ R

P×N with P ∈ N
∗. For example,

H may be a linear operator modeling a degradation of the

signal of interest, y a vector of observed data, ϕ a least-

squares criterion corresponding to the negative log-likelihood

associated with an additive zero-mean white Gaussian noise,

g a sparsity promoting measure, e.g., an 
1 norm, and D a

frame analysis transform or a gradient operator.

Often, ϕ is an additively separable function, i.e.,

ϕ(z,y) =
1

M

M∑
i=1

ϕi(zi, yi) ∀(z,y) ∈ (RM )2 (52)

where z = [z1, ..., zM ]T . Under this condition, the previous

optimization problem becomes an instance of the more general

stochastic one

minimize
x∈R

N
Φ(x) + g(Dx) (53)

involving the expectation

Φ(x) = E{ϕj(h
T
j x, yj)} (54)

where j, y, and H are now assumed to be random variables

and the expectation is computed with respect to the joint

distribution of (j,y,H), with hT
j the j-th line of H . More

precisely, when (52) holds, (51) is then a special case of (53)

with j uniformly distributed over {1, . . . ,M} and (y,H) de-

terministic. Conversely, it is also possible to consider that j is

deterministic and that for every i ∈ {2, . . . ,M}, ϕi = ϕ1, and

(yi,hi)1≤i≤M are identically distributed random variables. In

this second scenario, because of the separability condition

(52), the optimization problem (51) can be regarded as a proxy

for (53), where the expectation Φ(x) is approximated by a

sample estimate (or stochastic approximation under suitable

mixing assumptions). All these remarks illustrate the existing

connections between problems (51) and (53).

Note that the stochastic optimization problem defined in

(53) has been extensively investigated in two communities:

machine learning, and adaptive filtering, often under quite

different practical assumptions on the forms of the functions

(ϕj)j≥1 and g. In machine learning [76–78], x indeed rep-

resents the vector of parameters of a classifier which has to

be learnt, whereas in adaptive filtering [79, 80], it is generally

the impulse response of an unknown filter which needs to

be identified and possibly tracked. In order to simplify our
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presentation, in the rest of this section, we will assume that

the functions (ϕj)j≥1 are convex and Lipschitz-differentiable

with respect to their first argument (for example, they may be

logistic functions).

B. Optimization algorithms for solving stochastic problems

The main difficulty arising in the resolution of the stochastic

optimization problem (53) is that the integral involved in the

expectation term often cannot be computed in practice since it

is generally high-dimensional and the underlying probability

measure is usually unknown. Two main computational ap-

proaches have been proposed in the literature to overcome

this issue. The first idea is to approximate the expected loss

function by using a finite set of observations and to minimize

the associated empirical loss (51). The resulting deterministic

optimization problem can then be solved by using either

deterministic or stochastic algorithms, the latter being the topic

of Section IV-C. Here, we focus on the second family of

methods grounded in stochastic approximation techniques to

handle the expectation in (54). More precisely, a sequence

of identically distributed samples (yj ,hj)j≥1 is drawn, which

are processed sequentially according to some update rule. The

iterative algorithm aims to produce a sequence of random

iterates (xj)j≥1 converging to a solution to (53).

We begin with a group of online learning algorithms based

on extensions of the well-known stochastic gradient descent
(SGD) approach. Then we will turn our attention to stochastic

optimization techniques developed in the context of adaptive

filtering.

1) Online learning methods based on SGD: Let us assume

that an estimate uj ∈ R
N of the gradient of Φ at xj is

available at each iteration j ≥ 1 A popular strategy for solving

(53) in this context leverages the gradient estimates to derive

a so-called stochastic forward-backward (SFB) scheme, (also

sometimes called stochastic proximal gradient algorithm)

(∀j ≥ 1) zj = proxγjg◦D (xj − γjuj)

xj+1 = (1− λj)xj + λjzj (55)

where (γj)j≥1 is a sequence of positive stepsize values and

(λj)j≥1 is a sequence of relaxation parameters in ]0, 1]. Here-

above, proxψ(v) denotes the proximity operator at v ∈ R
N

of a lower-semicontinuous convex function ψ : RN →] −
∞,+∞] with nonempty domain, i.e., the unique minimizer of

ψ + 1
2‖ · −v‖2 (see [81] and the references therein), and

g ◦ D(x) = g(Dx). A convergence analysis of the SFB

scheme has been conducted in [82–85], under various assump-

tions on the functions Φ, g, on the stepsize sequence, and

on the statistical properties of (uj)j≥1. For example, if x1

is set to a given (deterministic) value, the sequence (xj)j≥1

generated by (55) is guaranteed to converge almost surely

to a solution of Problem (53) under the following technical

assumptions [84]

(i) Φ has a β−1-Lipschitzian gradient with β ∈]0,+∞[, g is

a lower-semicontinuous convex function, and Φ+ g ◦D
is strongly convex.

(ii) For every j ≥ 1,

E {‖uj‖2} < +∞, E{uj | Xj−1} = ∇Φ(xj),

E{‖uj −∇Φ(xj)‖2 | Xj−1} ≤ σ2(1 + αj‖∇Φ(xj)‖2)
where Xj = (yi,hi)1≤i≤j , and αj and σ are positive

values such that γj ≤ (2− ε)β(1+2σ2αj)
−1 with ε > 0.

(iii) We have∑
j≥1

λjγj = +∞ and
∑
j≥1

χ2
j < +∞

where, for every j ≥ 1, χ2
j = λjγ

2
j (1 + 2αj‖∇Φ(x)‖2)

and x is the solution of Problem (53).

When g ≡ 0, the SFB algorithm in (55) becomes equivalent

to SGD [86–89]. According to the above result, the conver-

gence of SGD is ensured as soon as
∑

j≥1 λjγj = +∞ and∑
j≥1 λjγ

2
j < +∞. In the unrelaxed case defined by λj ≡ 1,

we then retrieve a particular case of the decaying condition

γj ∝ j−1/2−δ with δ ∈]0, 1/2] usually imposed on the stepsize

in the convergence studies of SGD under slightly different

assumptions on the gradient estimates (uj)j≥1 (see [90, 91]

for more details). Note also that better convergence properties

can be obtained, if a Polyak-Ruppert averaging approach is

performed, i.e., the averaged sequence (xj)j≥1, defined as

xj = 1
j

∑j
i=1 xi for every j ≥ 1, is considered instead of

(xj)j≥1 in the convergence analysis [90, 92].

We now comment on approaches related to SFB that have

been proposed in the literature to solve (53). It should first be

noted that a simple alternative strategy to deal with a possibly

nonsmooth term g is to incorporate a subgradient step into

the previously mentioned SGD algorithm [93]. However, this

approach, like its deterministic version, may suffer from a slow

convergence rate [94]. Another family of methods, close to

SFB, adopt the regularized dual averaging (RDA) strategy,

first introduced in [94]. The principal difference between

SFB and RDA methods is that the latter rely on iterative

averaging of the stochastic gradient estimates, which consists

of replacing in the update rule (55), (uj)j≥1 by (uj)j≥1

where, for every j ≥ 1, uj = 1
j

∑j
i=1 ui. The advantage

is that it provides convergence guarantees for nondecaying

stepsize sequences. Finally, the so-called composite mirror de-
scent methods, introduced in [95], can be viewed as extended

versions of the SFB algorithm where the proximity operator is

computed with respect to a non Euclidean distance (typically,

a Bregman divergence).

In the last few years, a great deal of effort has been

made to modify SFB when the proximity operator of g ◦ D
does not have a simple expression, but when g can be split

into several terms whose proximity operators are explicit. We

can mention the stochastic proximal averaging strategy from

[96], the stochastic alternating direction method of mutipliers
(ADMM) from [97–99] and the alternating block strategy from

[100] suited to the case when g ◦D is a separable function.

Another active research area addresses the search for strate-

gies to improve the convergence rate of SFB. Two main

approaches can be distinguished in the literature. The first,

adopted for example in [83, 101–103], relies on subspace
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acceleration. In such methods, usually reminiscent of Nes-

terov’s acceleration techniques in the deterministic case, the

convergence rate is improved by using information from

previous iterates for the construction of the new estimate.

Another efficient way to accelerate the convergence of SFB

is to incorporate in the update rule second-order information

one may have on the cost functions. For instance, the method

described in [104] incorporates quasi-Newton metrics into the

SFB and RDA algorithms, and the natural gradient method

from [105] can be viewed as a preconditioned SGD algorithm.

The two strategies can be combined, as for example, in [106].

2) Adaptive filtering methods: In adaptive filtering, stochas-

tic gradient-like methods have been quite popular for a long

time [107, 108]. In this field, the functions (ϕj)j≥1 often

reduce to a least squares criterion

(∀j ≥ 1) ϕj(h
T
j x, yj) = (hT

j x− yj)
2 (56)

where x is the unknown impulse response. However, a specific

difficulty to be addressed is that the designed algorithms must

be able to deal with dynamical problems the optimal solution

of which may be time-varying due to some changes in the

statistics of the available data. In this context, it may be

useful to adopt a multivariate formulation by imposing, at each

iteration j ≥ Q

yj � Hjx (57)

where yj = [yj , . . . , yj−Q+1]
T , Hj = [hj , . . . ,hj−Q+1]

T ,

and Q ≥ 1. This technique, reminiscent of mini-batch proce-

dures in machine learning, constitutes the principle of affine
projection algorithms, the purpose of which is to accelerate the

convergence speed [109]. Our focus now switches to recent

work which aims to impose some sparse structure on the

desired solution.

A simple method for imposing sparsity is to introduce a

suitable adaptive preconditioning strategy in the stochastic

gradient iteration, leading to the so-called proportionate least
mean square method [110, 111], which can be combined

with affine projection techniques [112, 113]. Similarly to

the work already mentioned that has been developed in the

machine learning community, a second approach proceeds

by minimizing penalized criteria such as (53) where g is

a sparsity measure and D = IN . In [114, 115], zero-
attracting algorithms are developed which are based on the

stochastic subgradient method. These algorithms have been

further extended to affine projection techniques in [116–

118]. Proximal methods have also been proposed in the

context of adaptive filtering, grounded on the use of the

forward-backward algorithm [119], an accelerated version of

it [120], or primal-dual approaches [121]. It is interesting to

note that proportionate affine projection algorithms can be

viewed as special cases of these methods [119]. Other types

of algorithms have been proposed which provide extensions

of the recursive least squares method, which is known for

its fast convergence properties [106, 122, 123]. Instead of

minimizing a sparsity promoting criterion, it is also possible

to formulate the problem as a feasibility problem where, at

iteration j ≥ Q, one searches for a vector x satisfying both

supj≤i≤j−Q+1 |yi − hT
i x| ≤ η and ‖x‖1 ≤ ρ, where ‖ · ‖1

denotes the (possibly weighted) 
1 norm and (η, ρ) ∈]0,+∞[2.

Over-relaxed projection algorithms allow such kind of prob-

lems to be solved efficiently [124, 125].

C. Stochastic algorithms for solving deterministic optimiza-
tion problems

We now consider the deterministic optimization problem

defined by (51) and (52). Of particular interest is the case

when the dimensions N and/or M are very large (for instance,

in [126], M = 2500000 and in [127], N = 100250).

1) Incremental gradient algorithms: Let us start with in-

cremental methods, which are dedicated to the solution of

(51) when M is large, so that one prefers to exploit at

each iteration a single term ϕj , usually through its gradient,

rather than the global function ϕ. There are many variants of

incremental algorithms, which differ in the assumptions made

on the functions involved, on the stepsize sequence, and on

the way of activating the functions (ϕi)1≤i≤M . This order

could follow either a deterministic [128] or a randomized rule.

However, it should be noted that the use of randomization

in the selection of the components presents some benefits

in terms of convergence rates [129] which are of particular

interest in the context of machine learning [130, 131], where

the user can only afford few full passes over the data. Among

randomized incremental methods, the SAGA algorithm [132],

presented below, allows the problem defined in (51) to be

solved when the function g is not necessarily smooth, by

making use of the proximity operator introduced previously.

The n-th iteration of SAGA reads as

un = hjn∇ϕjn(h
T
jnxn, yjn)− hjn∇ϕjn(h

T
jnzjn,n, yjn)

+ 1
M

∑M
i=1 hi∇ϕi(h

T
i zi,n, yi)

zjn,n+1 = xn

zi,n+1 = zi,n ∀ i ∈ {1, . . . ,M} \ {jn}
xn+1 = proxγg◦D(xn − γun)

(58)

where γ ∈]0,+∞[, for all i∈{1, . . . ,M}, zi,1 = x1 ∈
R

N , and jn is drawn from an i.i.d. uniform distribution on

{1, . . . ,M}. Note that, although the storage of the variables

(zi,n)1≤i≤M can be avoided in this method, it is necessary to

store the M gradient vectors
(
hi∇ϕi(h

T
i zi,n, yi)

)
1≤i≤M

. The

convergence of Algorithm (58) has been analyzed in [132]. If

the functions (ϕi)1≤ı≤M are β−1-Lipschitz differentiable and

μ-strongly convex with (β, μ) ∈]0,+∞[2 and the stepsize γ
equals β/(2(μβM + 1)), then (E {‖xn − x‖2})n∈N goes to

zero geometrically with rate 1 − γ, where x is the solution

to Problem (51). When only convexity is assumed, a weaker

convergence result is available.

The relationship between Algorithm (58) and other stochas-

tic incremental methods existing in the literature is worthy of

comment. The main distinction arises in the way of building

the gradient estimates (un)n≥1. The standard incremental

gradient algorithm, analyzed for instance in [129], relies on

simply defining, at iteration n, un = hjn∇ϕjn(h
T
jnxn, yjn).

However, this approach, while leading to a smaller com-

putational complexity per iteration and to a lower mem-

ory requirement, gives rise to suboptimal convergence rates

[91, 129], mainly due to the fact that its convergence requires
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a stepsize sequence (γn)n≥1 decaying to zero. Motivated by

this observation, much recent work [126, 130–134] has been

dedicated to the development of fast incremental gradient
methods, which would benefit from the same convergence

rates as batch optimization methods, while using a randomized

incremental approach. A first class of methods relies on a

variance reduction approach [130, 132–134] which aims at

diminishing the variance in successive estimates (un)n≥1.

All of the aforementioned algorithms are based on iterations

which are similar to (58). In the stochastic variance reduction
gradient method and the semi-stochastic gradient descent
method proposed in [133, 134], a full gradient step is made

at every K iterations, K ≥ 1, so that a single vector z̃n is

used instead of (zi,n)1≤i≤M in the update rule. This so-called

mini-batch strategy leads to a reduced memory requirement at

the expense of more gradient evaluations. As pointed out in

[132], the choice between one strategy or another may depend

on the problem size and on the computer architecture. In the

stochastic average gradient algorithm (SAGA) from [130], a

multiplicative factor 1/M is placed in front of the gradient

differences, leading to a lower variance counterbalanced by a

bias in the gradient estimates. It should be emphasized that

the work in [130, 133] is limited to the case when g ≡ 0. A

second class of methods, closely related to SAGA, consists

of applying the proximal step to zn − γun, where zn is

the average of the variables (zi,n)1≤i≤M (which thus need

to be stored). This approach is retained for instance in the

Finito algorithm [131] as well as in some instances of the

minimization by incremental surrogate optimization (MISO)

algorithm, proposed in [126]. These methods are of particular

interest when the extra storage cost is negligible with respect

to the high computational cost of the gradients. Note that

the MISO algorithm relying on the majoration-minimization

framework employs a more generic update rule than Finito and

has proven convergence guarantees even when g is nonzero.

2) Block coordinate approaches: In the spirit of the Gauss-

Seidel method, an efficient approach for dealing with Prob-

lem (51) when N is large consists of resorting to block

coordinate alternating strategies. Sometimes, such a block

alternation can be performed in a deterministic manner [135,

136]. However, many optimization methods are based on fixed

point algorithms, and it can be shown that with deterministic

block coordinate strategies, the contraction properties which

are required to guarantee the convergence of such algorithms

are generally no longer satisfied. In turn, by resorting to

stochastic techniques, these properties can be retrieved in some

probabilistic sense [85]. In addition, using stochastic rules for

activating the different blocks of variables often turns out to

be more flexible.

To illustrate why there is interest in block coordinate

approaches, let us split the target variable x as [xT
1 , . . . ,x

T
K ]T ,

where, for every k ∈ {1, . . . ,K}, xk ∈ R
Nk is the k-th block

of variables with reduced dimension Nk (with N1+· · ·+NK =
N ). Let us further assume that the regularization function can

be blockwise decomposed as

g(Dx) =
K∑

k=1

g1,k(xk) + g2,k(Dkxk) (59)

where, for every k ∈ {1, . . . ,K}, Dk is a matrix in R
Pk×Nk ,

and g1,k : R
Nk →] − ∞,+∞] and g2,k : R

Pk →] − ∞,+∞]
are proper lower-semicontinuous convex functions. Then, the

stochastic primal-dual proximal algorithm allowing us to solve

Problem (51) is given by

Algorithm 5 Stochastic primal-dual proximal algorithm

for n = 1, 2, . . . do
for k = 1 to K do

with probability εk ∈ (0, 1] do
vk,n+1 = (Id− proxτ−1g2,k

)(vk,n +Dkxk,n)

xk,n+1 = proxγg1,k

(
xk,n−γ

(
τDT

k (2vk+1,n−vk,n)

+ 1
M

∑M
i=1 hi,k∇ϕi(

∑K
k′=1 h

T
i,k′xk′,n)

))
otherwise
vk,n+1 = vk,n, xk,n+1 = xk,n.

end for
end for

In the algorithm above, for every i ∈ {1, . . . ,M}, the scalar

product hT
i x has been rewritten in a blockwise manner as∑K

k′=1 h
T
i,k′xk′ . Under some stability conditions on the choice

of the positive step sizes τ and γ, xn = [xT
1,n, . . . ,x

T
K,n]

T

converges almost surely to a solution of the minimization

problem, as n → +∞ (see [137] for more technical details).

It is important to note that the convergence result was estab-

lished for arbitrary probabilities ε = [ε1, . . . , εK ]T , provided

that the block activation probabilities εk are positive and

independent of n. Note that the various blocks can also be

activated in a dependent manner at a given iteration n. Like

its deterministic counterparts (see [138] and the references

therein), this algorithm enjoys the property of not requiring

any matrix inversion, which is of paramount importance when

the matrices (Dk)1≤k≤K are of large size and do not have

some simple forms.

When g2,k ≡ 0, the random block coordinate forward-

backward algorithm is recovered as an instance of Algorithm 5

since the dual variables (vk,n)1≤k≤K,n∈N can be set to 0

and the constant τ becomes useless. An extensive literature

exists on the latter algorithm and its variants. In particular, its

almost sure convergence was established in [85] under general

conditions, whereas some worst case convergence rates were

derived in [139–143]. In addition, if g1,k ≡ 0, the random
block coordinate descent algorithm is obtained [144].

When the objective function minimized in Problem (51)

is strongly convex, the random block coordinate forward-

backward algorithm can be applied to the dual problem, in

a similar fashion to the dual forward-backward method used

in the deterministic case [145]. This leads to so-called dual

ascent strategies which have become quite popular in machine

learning [146–149].

Random block coordinate versions of other proximal algo-

rithms such as the Douglas-Rachford algorithm and ADMM

have also been proposed [85, 150]. Finally, it is worth em-

phasizing that asynchronous distributed algorithms can be

deduced from various randomly activated block coordinate

methods [137, 151]. As well as dual ascent methods, the latter

algorithms can also be viewed as incremental methods.
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V. AREAS OF INTERSECTION:

OPTIMIZATION-WITHIN-MCMC AND MCMC-DRIVEN

OPTIMIZATION

There are many important examples of the synergy between

stochastic simulation and optimization, including global op-

timization by simulated annealing, stochastic EM algorithms,

and adaptive MCMC samplers [4]. In this section we highlight

some of the interesting new connections between modern

simulation and optimization that we believe are particularly

relevant for the SP community, and that we hope will stimulate

further research in this community.

A. Riemannian manifold MALA and HMC

Riemannian manifold MALA and HMC exploit differential

geometry for the problem of specifying an appropriate pro-

posal covariance matrix Σ that takes into account the geometry

of the target density π [20]. These new methods stem from the

observation that specifying Σ is equivalent to formulating the

Langevin or Hamiltonian dynamics in an Euclidean parameter

space with inner product 〈w,Σ−1x〉. Riemannian methods

advance this observation by considering a smoothly-varying

position dependent matrix Σ(x), which arises naturally by for-

mulating the dynamics in a Riemannian manifold. The choice

of Σ(x) then becomes the more familiar problem of specifying

a metric or distance for the parameter space [20]. Notice

that the Riemannian and the canonical Euclidean gradients

are related by ∇̃g(x) = Σ(x)∇g(x). Therefore this problem

is also closely related to gradient preconditioning in gradient

descent optimization discussed in Sec IV.B. Standard choices

for Σ include for example the inverse Hessian matrix [21, 31],

which is closely related to Newton’s optimization method,

and the inverse Fisher information matrix [20], which is the

“natural” metric from an information geometry viewpoint and

is also related to optimization by natural gradient descent

[105]. These strategies have originated in the computational

statistics community, and perform well in inference problems

that are not too high-dimensional. Therefore, the challenge is

to design new metrics that are appropriate for SP statistical

models (see [152, 153] for recent work in this direction).

B. Proximal MCMC algorithms

Most high-dimensional MCMC algorithms rely particularly

strongly on differential analysis to navigate vast parameter

spaces efficieoptimizationntly. Conversely, the potential of

convex calculus for MCMC simulation remains largely unex-

plored. This is in sharp contrast with modern high-dimensional

optimization described in Section IV, where convex calculus

in general, and proximity operators [81, 154] in particular,

are used extensively. This raises the question as to whether

convex calculus and proximity operators can also be useful for

stochastic simulation, especially for high-dimensional target

densities that are log-concave, and possibly not continuously

differentiable.

This question was studied recently in [24] in the context of

Langevin algorithms. As explained in Section II.B, Langevin

MCMC algorithms are derived from discrete-time approxi-

mations of the time-continuous Langevin diffusion process

(5). Of course, the stability and accuracy of the discrete

approximations determine the theoretical and practical conver-

gence properties of the MCMC algorithms they underpin. The

approximations commonly used in the literature are generally

well-behaved and lead to powerful MCMC methods. However,

they can perform poorly if π is not sufficiently regular, for

example if π is not continuously differentiable, if it is heavy-

tailed, or if it has lighter tails than a Gaussian distribution.

This drawback limits the application of MCMC approaches

to many SP problems, which rely increasingly on models that

are not continuously differentiable or that involve constraints.

Using proximity operators, the following proximal approx-

imation for the Langevin diffusion process (5) was recently

proposed in [24]

X(t+1) ∼ N
(
prox−δ

2 log π

(
X(t)

)
, δIN

)
(60)

as an alternative to the standard forward Euler approximation

X(t+1) ∼ N (
X(t) + δ

2∇ log π
(
X(t)

)
, δIn

)
used in MALA4.

Similarly to MALA, the time step δ can be adjusted online

to achieve an acceptance probability of approximately 50%.

It was established in [24] that when π is log-concave, (60)

defines a remarkably stable discretization of (5) with optimal

theoretical convergence properties. Moreover, the “proximal”

MALA resulting from combining (60) with an MH step has

very good geometric ergodicity properties. In [24], the algo-

rithm efficiency was demonstrated empirically on challenging

models that are not well addressed by other MALA or HMC

methodologies, including an image resolution enhancement

model with a total-variation prior. Further practical assess-

ments of proximal MALA algorithms would therefore be a

welcome area of research.

Proximity operators have also been used recently in [155]

for HMC sampling from log-concave densities that are not

continuously differentiable. The experiments reported in [155]

show that this approach can be very efficient, in particular

for SP models involving high-dimensionality and non-smooth

priors. Unfortunately, theoretically analyzing HMC methods

is difficult, and the precise theoretical convergence properties

of this algorithm are not yet fully understood. We hope future

work will focus on this topic.

C. optimization-driven Gaussian simulation

The standard approach for simulating from a multivariate

Gaussian distribution with precision matrix Q ∈ R
n×n is

to perform a Cholesky factorization Q = LTL, generate an

auxiliary Gaussian vector w ∼ N (0, IN ), and then obtain the

desired sample x by solving the linear system Lx = w [156].

The computational complexity of this approach generally

scales at a prohibitive rate O(N3) with the model dimension

N , making it impractical for large problems, (note however

that there are specific cases with lower complexity, for instance

when Q is Toeplitz [157], circulant [158] or sparse [156]).

optimization-driven Gaussian simulators arise from the ob-

servation that the samples can also be obtained by minimizing

4Recall that proxϕ(v) denotes the proximity operator of ϕ evaluated at

v ∈ R
N [81, 154].
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a carefully designed stochastic cost function [159, 160]. For il-

lustration, consider a Bayesian model with Gaussian likelihood

y|x ∼ N (Hx,Σy) and Gaussian prior x ∼ N (x0,Σx),
for some linear observation operator H ∈ R

N×M , prior

mean x0 ∈ R
N , and positive definite covariance matrices

Σx ∈ R
N×N and Σy ∈ R

M×M . The posterior distribution

p(x|y) is Gaussian with mean μ ∈ R
N and precision matrix

Q ∈ R
N×N given by

Q = HTΣ−1
y H +Σ−1

x

μ = Q−1
(
HTΣ−1

y y +Σ−1
x x0

)
.

Simulating samples x|y ∼ N (μ,Q−1) by Cholesky factoriza-

tion of Q can be computationally expensive when N is large.

Instead, optimization-driven simulators generate samples by

solving the following “random” minimization problem

x = argmin
u∈RN

(w1 −Hu)
T
Σ−1

y (w1 −Hu)

+ (w2 − u)
T
Σ−1

x (w2 − u)
(61)

with random vectors w1 ∼ N (y,Σy) and w2 ∼ N (x0,Σx).
It is easy to check that if (61) is solved exactly, then x
is a sample from the desired posterior distribution p(x|y).
From a computational viewpoint, however, it is significantly

more efficient to solve (61) approximately, for example by

using a few linear conjugate gradient iterations [160]. The

approximation error can then be corrected by using an MH step

[161], at the expense of introducing some correlation between

the samples and therefore reducing the total effective sample

size. Fortunately, there is an elegant strategy to determine auto-

matically the optimal number of conjugate gradient iterations

that maximizes the overall efficiency of the algorithm [161].

VI. CONCLUSIONS AND OBSERVATIONS

In writing this paper we have sought to provide an in-

troduction to stochastic simulation and optimization methods

in a tutorial format, but which also raised some interesting

topics for future research. We have addressed a variety of

MCMC methods and discussed surrogate methods, such as

variational Bayes, the Bethe approach, belief and expectation

propagation, and approximate message passing. We also dis-

cussed a range of recent advances in optimization methods

that have been proposed to solve stochastic problems, as well

as stochastic methods for deterministic optimization. Subse-

quently, we highlighted new methods that combine simulation

and optimization, such as proximal MCMC algorithms and

optimization-driven Gaussian simulators. Our expectation is

that future methodologies will become more flexible. Our com-

munity has successfully applied computational inference meth-

ods, as we have described, to a plethora of challenges across

an enormous range of application domains. Each problem

offers different challenges, ranging from model dimensionality

and complexity, data (too much or too little), inferences,

accuracy and computation times. Consequently, it seems not

unreasonable to speculate that the different computational

methodologies discussed in this paper will evolve to become

more adaptable, with their boundaries becoming less well

defined, and with the development of algorithms that make

use of simulation, variational approximations and optimization

simultaneously. Such an approach is more likely to be able to

handle an even wider range of models, datasets, inferences,

accuracies and computing times in a computationally efficient

way.
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[5] P. Green, K. Latuszyński, M. Pereyra, and C. P. Robert, “Bayesian
computation: a summary of the current state, and samples backwards
and forwards,” Statistics and Computing, 2015, in press.

[6] A. Doucet and A. M. Johansen, “A tutorial on particle filtering and
smoothing: Fiteen years later,” in In The Oxford Handbook of Nonlinear
Filtering, D. Crisan and B. Rozovsky, Eds. Oxford University Press,
2011.

[7] A. Beskos, A. Jasra, E. A. Muzaffer, and A. M. Stuart, “Sequential
Monte Carlo methods for Bayesian elliptic inverse problems,” Statistics
and Computing, vol. 25, 2015, in press.

[8] J. Marin, P. Pudlo, C. Robert, and R. Ryder, “Approximate Bayesian
computational methods,” Statistics and Computing, pp. 1–14, 2011.

[9] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller,
“Equations of state calculations by fast computational machine,” Jour-
nal of Chemical Physics, vol. 21, no. 6, pp. 1087–1091, 1953.

[10] W. Hastings, “Monte Carlo sampling using Markov chains and their
applications,” Biometrika, vol. 57, no. 1, pp. 97–109, 1970.

[11] S. Chib and E. Greenberg, “Understanding the Metropolis–Hastings
algorithm,” Ann. Mathemat. Statist., vol. 49, pp. 327–335, 1995.

[12] M. Bédard, “Weak convergence of Metropolis algorithms for non-i.i.d.
target distributions,” Ann. Appl. Probab., vol. 17, no. 4, pp. 1222–1244,
2007.

[13] G. O. Roberts and J. S. Rosenthal, “Optimal scaling for various
metropolis-hastings algorithms,” Statist. Sci., vol. 16, no. 4, pp. 351–
367, 11 2001.

[14] C. Andrieu and G. Roberts, “The pseudo-marginal approach for ef-
ficient Monte Carlo computations,” Ann. Statist., vol. 37, no. 2, pp.
697–725, 2009.

[15] C. Andrieu, A. Doucet, and R. Holenstein, “Particle Markov chain
Monte Carlo (with discussion),” J. Royal Statist. Society Series B, vol.
72 (2), pp. 269–342, 2011.

[16] M. Pereyra, N. Dobigeon, H. Batatia, and J.-Y. Tourneret, “Estimating
the granularity coefficient of a Potts-Markov random field within an
MCMC algorithm,” IEEE Trans. Image Processing, vol. 22, no. 6, pp.
2385–2397, June 2013.

[17] S. Jarner and E. Hansen, “Geometric ergodicity of Metropolis algo-
rithms,” Stochastic Processes and Their Applications, vol. 85, no. 2,
pp. 341–361, 2000.

[18] A. Beskos, G. Roberts, and A. Stuart, “Optimal scalings for local
Metropolis-Hastings chains on nonproduct targets in high dimensions,”
Ann. Appl. Probab., vol. 19, no. 3, pp. 863–898, 2009.

[19] G. Roberts and R. Tweedie, “Exponential convergence of Langevin
distributions and their discrete approximations,” Bernoulli, vol. 2, no. 4,
pp. 341–363, 1996.

[20] M. Girolami and B. Calderhead, “Riemann manifold Langevin and
Hamiltonian Monte Carlo methods,” Journal of the Royal Statistical
Society: Series B (Statistical Methodology), vol. 73, pp. 123–214, 2011.

[21] M. Betancourt, “A general metric for Riemannian manifold Hamilto-
nian Monte Carlo,” in National Conference on the Geometric Science of
Information, ser. Lecture Notes in Computer Science 8085, F. Nielsen
and F. Barbaresco, Eds. Springer, 2013, pp. 327–334.
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splitting method for solving monotone inclusions in Hilbert spaces,”
2014, http://arxiv.org/abs/1403.7999.

[85] P. L. Combettes and J.-C. Pesquet, “Stochastic quasi-Fejér block-
coordinate fixed point iterations with random sweeping,” SIAM J.
Optim., vol. 25, no. 2, pp. 1221–1248, 2015.

[86] H. Robbins and S. Monro, “A stochastic approximation method,” Ann.
Math. Statistics, vol. 22, pp. 400–407, 1951.

[87] J. M. Ermoliev and Z. V. Nekrylova, “The method of stochastic
gradients and its application,” in Seminar: Theory of Optimal Solutions.
No. 1 (Russian). Akad. Nauk Ukrain. SSR, Kiev, 1967, pp. 24–47.

[88] O. V. Guseva, “The rate of convergence of the method of generalized
stochastic gradients,” Kibernetika (Kiev), no. 4, pp. 143–145, 1971.

[89] D. P. Bertsekas and J. N. Tsitsiklis, “Gradient convergence in gradient
methods with errors,” SIAM J. Optim., vol. 10, no. 3, pp. 627–642,
2000.

[90] F. Bach and E. Moulines, “Non-asymptotic analysis of stochastic
approximation algorithms for machine learning,” in Proc. Ann. Conf.
Neur. Inform. Proc. Syst., Granada, Spain, Dec. 12-15 2011, pp. 451–
459.

[91] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, “Robust stochastic
approximation approach to stochastic programming,” SIAM J. Optim.,
vol. 19, no. 4, pp. 1574–1609, 2008.

[92] B. T. Polyak and A. B. Juditsky, “Acceleration of stochastic approx-
imation by averaging,” SIAM J. Control Optim., vol. 30, no. 4, pp.
838–855, Jul. 1992.

[93] S. Shalev-Shwartz, Y. Singer, and N. Srebro, “Pegasos: Primal esti-
mated sub-gradient solver for SVM,” in Proc. 24th Int. Conf. Mach.
Learn., Corvalis, Oregon, Jun. 20-24 2007, pp. 807–814.

[94] L. Xiao, “Dual averaging methods for regularized stochastic learning
and online optimization,” J. Mach. Learn. Res., vol. 11, pp. 2543–2596,
Dec. 2010.

[95] J. Duchi, S. Shalev-Shwartz, Y. Singer, and A. Tewari, “Composite
objective mirror descent,” in Proc. Conf. Learn. Theory, Haifa, Israel,
Jun. 27-29 2010, pp. 14–26.

[96] L. W. Zhong and J. T. Kwok, “Accelerated stochastic gradient method
for composite regularization,” J. Mach. Learn. Rech., vol. 33, pp. 1086–
1094, 2014.

[97] H. Ouyang, N. He, L. Tran, and A. Gray, “Stochastic alternating
direction method of multipliers,” in Proc. 30th Int. Conf. Mach. Learn.,
Atlanta, USA, Jun. 16-21 2013, pp. 80–88.

[98] T. Suzuki, “Dual averaging and proximal gradient descent for online
alternating direction multiplier method,” in Proc. 30th Int. Conf. Mach.
Learn., Atlanta, USA, Jun. 16-21 2013, pp. 392–400.

[99] W. Zhong and J. Kwok, “Fast stochastic alternating direction method
of multipliers,” Beijing, China, Tech. Rep., Jun. 21-26 2014.

[100] Y. Xu and W. Yin, “Block stochastic gradient iteration for convex and
nonconvex optimization,” 2014, http://arxiv.org/pdf/1408.2597v2.pdf.

[101] C. Hu, J. T. Kwok, and W. Pan, “Accelerated gradient methods for
stochastic optimization and online learning,” in Proc. Ann. Conf. Neur.
Inform. Proc. Syst., Vancouver, Canada, Dec. 11-12 2009, pp. 781–789.

[102] G. Lan, “An optimal method for stochastic composite optimization,”
Math. Program., vol. 133, no. 1-2, pp. 365–397, 2012.

[103] Q. Lin, X. Chen, and J. Peña, “A sparsity preserving stochastic gradient

method for composite optimization,” Comput. Optim. Appl., vol. 58,
no. 2, pp. 455–482, June 2014.

[104] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” J. Mach. Learn. Res.,
vol. 12, pp. 2121–2159, Jul. 2011.

[105] S.-I. Amari, “Natural gradient works efficiently in learning,” Neural
Comput., vol. 10, no. 2, pp. 251–276, Feb. 1998.

[106] E. Chouzenoux, J.-C. Pesquet, and A. Florescu, “A stochastic 3MG
algorithm with application to 2D filter identification,” in Proc. 22nd
European Signal Processing Conference, Lisbon, Portugal, 1-5 Sept.
2014, pp. 1587–1591.

[107] B. Widrow and S. D. Stearns, Adaptive signal processing. Englewood
Cliffs, NJ: Prentice-Hall, 1985.

[108] H. J. Kushner and G. G. Yin, Stochastic Approximation and Recursive
Algorithms and Applications, 2nd ed. New York: Springer-Verlag,
2003.

[109] S. L. Gay and S. Tavathia, “The fast affine projection algorithm,” in
Proc. Int. Conf. Acoust., Speech Signal Process., vol. 5, Detroit, MI,
May 9-12 1995, pp. 3023–3026.

[110] A. W. H. Khong and P. A. Naylor, “Efficient use of sparse adaptive
filters,” in Proc. Asilomar Conf. Signal, Systems and Computers, Pacific
Grove, CA, Oct. 29-Nov. 1 2006, pp. 1375–1379.

[111] C. Paleologu, J. Benesty, and S. Ciochina, “An improved proportionate
NLMS algorithm based on the l0 norm,” in Proc. Int. Conf. Acoust.,
Speech Signal Process., Dallas, TX, March 14-19 2010.

[112] O. Hoshuyama, R. A. Goubran, and A. Sugiyama, “A generalized
proportionate variable step-size algorithm for fast changing acoustic
environments,” in Proc. Int. Conf. Acoust., Speech Signal Process.,
vol. 4, Montreal, Canada, May 17-21 2004, pp. iv–161– iv–164.

[113] C. Paleologu, J. Benesty, and F. Albu, “Regularization of the improved
proportionate affine projection algorithm,” in Proc. Int. Conf. Acoust.,
Speech Signal Process., Kyoto, Japan, Mar. 25-30 2012, pp. 169–172.

[114] Y. Chen, G. Y., and A. O. Hero, “Sparse LMS for system identification,”
in Proc. Int. Conf. Acoust., Speech Signal Process., Taipei, Taiwan, Apr.
19-24 2009, pp. 3125–3128.

[115] ——, “Regularized least-mean-square algorithms,” 2010,
http://arxiv.org/abs/1012.5066.

[116] R. Meng, R. C. De Lamare, and V. H. Nascimento, “Sparsity-aware
affine projection adaptive algorithms for system identification,” in Proc.
Sensor Signal Process. Defence, London, U.K., Sept. 27-29 2011, pp.
1–5.

[117] L. V. S. Markus, W. A. Martins, and P. S. R. Diniz, “Affine projection
algorithms for sparse system identification,” in Proc. Int. Conf. Acoust.,
Speech Signal Process., Vancouver, Canada, May 26-31 2013, pp.
5666–5670.

[118] L. V. S. Markus, T. N. Tadeu N. Ferreira, W. A. Martins, and P. S. R.
Diniz, “Sparsity-aware data-selective adaptive filters,” IEEE Trans.
Signal Process., vol. 62, no. 17, pp. 4557–4572, Sept. 2014.

[119] Y. Murakami, M. Yamagishi, M. Yukawa, and I. Yamada, “A sparse
adaptive filtering using time-varying soft-thresholding techniques,” in
Proc. Int. Conf. Acoust., Speech Signal Process., Dallas, TX, Mar. 14-
19 2010, pp. 3734–3737.

[120] M. Yamagishi, M. Yukawa, and I. Yamada, “Acceleration of adaptive
proximal forward-backward splitting method and its application to
sparse system identification,” in Proc. Int. Conf. Acoust., Speech Signal
Process., Prague, Czech Republic, May 22-27 2011, pp. 4296–4299.

[121] S. Ono, M. Yamagishi, and I. Yamada, “A sparse system identification
by using adaptively-weighted total variation via a primal-dual splitting
approach,” in Proc. Int. Conf. Acoust., Speech Signal Process., Van-
couver, Canada, 26-31 May 2013, pp. 6029–6033.

[122] D. Angelosante, J. A. Bazerque, and G. B. Giannakis, “Online adaptive
estimation of sparse signals: where RLS meets the �1 -norm,” IEEE
Trans. Signal Process., vol. 58, no. 7, pp. 3436–3447, Jul. 2010.

[123] B. Babadi, N. Kalouptsidis, and V. Tarokh, “SPARLS: The sparse RLS
algorithm,” IEEE Trans. Signal Process., vol. 58, no. 8, pp. 4013–4025,
Aug. 2010.

[124] Y. Kopsinis, K. Slavakis, and S. Theodoridis, “Online sparse system
identification and signal reconstruction using projections onto weighted
�1 balls,” IEEE Trans. Signal Process., vol. 59, no. 3, pp. 936–952,
Mar. 2011.

[125] K. Slavakis, Y. Kopsinis, S. Theodoridis, and S. McLaughlin, “Gen-
eralized thresholding and online sparsity-aware learning in a union of
subspaces,” IEEE Trans. Signal Process., vol. 61, no. 15, pp. 3760–
3773, Aug. 2013.

[126] J. Mairal, “Incremental majorization-minimization optimization with
application to large-scale machine learning,” SIAM J. Optim., vol. 25,
no. 2, pp. 829–855, 2015.



17

[127] A. Repetti, E. Chouzenoux, and J.-C. Pesquet, “A parallel block-
coordinate approach for primal-dual splitting with arbitrary random
block selection,” in Proc. European Signal Process. Conf. (EUSIPCO
2015), Nice, France, Aug. 31 - Sep. 4 2015.

[128] D. Blatt, A. O. Hero, and H. Gauchman, “A convergent incremental
gradient method with a constant step size,” SIAM J. Optim., vol. 18,
no. 1, pp. 29–51, 1998.

[129] D. P. Bertsekas, “Incremental gradient, subgradient, and proximal meth-
ods for convex optimization: A survey,” 2010, http://www.mit.edu/ dim-
itrib/Incremental Survey LIDS.pdf.

[130] M. Schmidt, N. Le Roux, and F. Bach, “Minimizing finite sums with
the stochastic average gradient,” 2013, http://arxiv.org/abs/1309.2388.

[131] A. Defazio, J. Domke, and T. Cartano, “Finito: A faster, permutable
incremental gradient method for big data problems,” in Proc. 31st Int.
Conf. Mach. Learn., Beijing, China, Jun. 21-26 2014, pp. 1125–1133.

[132] A. Defazio, F. Bach, and S. Lacoste, “SAGA: A fast incremental
gradient method with support for non-strongly convex composite
objectives,” in Proc. Ann. Conf. Neur. Inform. Proc. Syst., Montreal,
Canada, Dec. 8-11 2014, pp. 1646–1654.

[133] R. Johnson and T. Zhang, “Accelerating stochastic gradient descent
using predictive variance reduction,” in Proc. Ann. Conf. Neur. Inform.
Proc. Syst., Lake Tahoe, Nevada, Dec. 5-10 2013, pp. 315–323.
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Systèmes, Centre National de la Recherche Scien-
tifique (CNRS), Gif-sur-Yvette. He is currently a

Professor (classe exceptionnelle) with Université de Paris-Est Marne-la-Vallée,
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