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Abstract—A proper temporal model is essential to analysis tasks involving sequential data. In computer-assisted surgical
training, which is the focus of this study, obtaining accurate temporal models is a key step towards automated skill-rating.
Conventional learning approaches can have only limited success in this domain due to insuf cient amount of data with accurate
labels. We propose a novel formulation termed Relative Hidden Markov Model and develop algorithms for obtaining a solution
under this formulation. The method requires only relative ranking between input pairs, which are readily available from training
sessions in the target application, hence alleviating the requirement on data labeling. The proposed algorithm learns a model from
the training data so that the attribute under consideration is linked to the likelihood of the input, hence supporting comparing new
sequences. or evaluation, synthetic data are rst used to assess the performance of the approach, and then we experiment with
real videos from a widely-adopted surgical training platform. Experimental results suggest that the proposed approach provides
a promising solution to video-based motion skill evaluation. To further illustrate the potential of generalizing the method to other
applications of temporal analysis, we also report experiments on using our model on speech-based emotion recognition.

Index Terms—Relative Hidden Markov Model, Relative Learning, Temporal Model, Emotion Recognition, Surgical Skill
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1 INTRODUCTION
Human capability in mastering body motion is the
key in domains such as sports, rehabilitation, surgery
and dance. Computer-based approaches have been
developed over the years for facilitating acquiring
(e.g., training in sports and surgery) or regaining (e.g.,
in rehabilitation) such motion-related skills by human
subjects. One central task faced by systems using
such approaches is the analysis of motion skills based
on some temporal sensory data. With such analysis,
skill metrics may be extracted and assigned to a
given movement and feedback may accordingly be
provided to the subjects for taking actions to improve
the underlying skill. For example, [1] utilized con-
trol trajectories and motion capture data for human
skill analysis, [2] reported motion skill analysis in
sports using data from motion sensors, [3] studied
computational skill rating in manipulating robots,
and [4] considered hand movement analysis for skill
evaluation in console operation.

Among others, surgery-related applications have
attracted increasing interests, where motion expertise
is the primary concern. To improve their motion ex-
pertise, surgeons often have to go through lengthy
training processes. In recent years, simulation-based
surgical training platforms have been developed and
widely applied in surgical education. One prominent
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example is the Fundamentals of Laparoscopic Surgery
(FLS) Trainer Box (www.flsprogram.org). With such
platforms, it is possible to develop computational
approaches to provide objective and quantifiable per-
formance metrics, overcoming the shortcomings in
traditional training that relies on costly practice of
direct supervision by senior surgeons. Recognizing
the sequential nature of motion data, many analysis
approaches utilize state-transition models, such as
the Hidden Markov Model (HMM). For example, [5]
provided an HMM-based method to evaluate surgical
residents’ learning curve. The method first constructs
different HMMs for each different levels of expertise,
and then calculates a probability distance between the
expert and a novice resident. The magnitude of the
probability distance is used to rate the level of the
novice resident. HMM was also adopted in [6] to mea-
sure motion skills in surgical tasks, where a recorded
video is first segmented into basic gestures based on
velocity and angle of movement, with segments of
the gestures corresponding to the states of an HMM.
In [7], Hierarchical Dircichlet process hidden Markov
model (HDPHMM [8]) was utilized, which relaxed the
requirement of predefining the number of the states
for the model.

One practical difficulty in these approaches is that
they require the skill labels for the training data since
the HMMs are typically learned from sets of data
streams with corresponding skill levels. Labeling the
skill of a trainee is currently done by senior surgeons,
which is not only a costly practice but also one that
is subjective and less quantifiable. Thus it is difficult,
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if not impossible, to obtain a large amount of data
with sufficiently reliable skill labels for HMM training.
This problem has also been encountered in other fields
such as image classification. For example, in [9], it was
argued that using binary labels to describe images is
not only too restrictive but also unnatural and thus
relative visual attributes were used and classifiers
were trained based on such features. Relative infor-
mation has also been used in other applications, e.g.,
distance metric learning [10], face verification [11],
and human-machine interaction [12].

In this paper, we propose a novel formulation
termed Relative Hidden Markov Model and develop an
algorithm for obtaining a solution under this model.
The proposed method utilizes only relative ranking
(based on certain attribute of interest, or motion skill
in the surgical training application) between pairs of
inputs, which is easier to obtain and often more con-
sistent. This is especially useful for applications like
video-based surgical training, where the trainees go
through a series of training sessions with their skills
improving over time, and thus the time of the sessions
would already provide natural relative ranking of
the skills at the corresponding time. The proposed
algorithm effectively learns a model from the training
data so that the attribute under consideration (i.e.,
the motion skill in our application) is linked to the
likelihood of the inputs under the learned model. The
learned model can then be used to compare new data
pairs. For evaluation, we first design synthetic exper-
iments to systematically evaluate the model and the
algorithm, and then experiment with real data cap-
tured on a commonly-used surgical training platform.
The experimental results suggest that the proposed
approach provides a promising solution to the real-
world problem of motion skill evaluation from video.

The key contribution of the work lies in the novel
formulation of learning temporal models using only
relative information and the proposed algorithm for
obtaining solutions under the formulation. Discussion
of its relationship to the latent support vector ma-
chine is also provided to assist the understanding
of why the proposed formulation is suitable for the
proposed scenarios. Additional contributions include
the specific application of the proposed method to the
problem of video-based motion skill evaluation in sur-
gical training, which has seen increasing importance
in recent years. An earlier exposition of the proposed
method can be found in [13]. This current paper
represents a full exploration of the method, including
a new learning algorithm that is more efficient, new
comparative analysis of the method, and new and up-
dated experiments. In particular, to illustrate that the
proposed model is general in nature but not confined
to video-based skill analysis, we report its application
to a different problem, emotion recognition using
speech. To facilitate further exploration and validation
by other researchers, source code accompanying this

paper has been made publicly available 1.
In the remainder of this paper, we first review

some of the related work in Sec. 2 and describe basic
notations of the HMM in Sec. 3. The proposed method
is then presented in Sec. 4, including a new algorithm
for obtaining solutions in Sec. 4.3 and discussion of
its relationship to latent support vector machine in
Sec. 4.4. The proposed method is evaluated on three
types of data in Sec. 5, including synthetic data (Sec.
5.1) and videos from surgical simulation systems (Sec.
5.2), and speech data (Sec. 6). The paper is concluded
in Sec. 7. In this paper, we use upper-case bold font
(e.g., X) for matrices, lower-case bold font (e.g., x) for
vectors. We use Xi to represent ith sequence, Xi

t for
the tth frame of sequence Xi.

2 RELATED WORK

In this section, we first review two categories of exist-
ing work, discriminative learning for hidden Markov
models and learning based on relative information,
which are most related to our approach. Distinction
between our proposed method and the reviewed
work will be briefly stated. We also briefly discuss a
few more related efforts on skill evaluation in surgery.

Discriminative learning for HMM: Maximum-
likelihood methods for learning HMM (e.g., the
forward-backward algorithm) in general do not guar-
antee the discrimination ability of the learned models.
To this end, several discriminative learning methods
for HMM have been proposed. In [14], a discrimina-
tive training method for HMM was proposed based
on perceptron algorithms. The methods iterates be-
tween the Viterbi algorithm and the additive update
of the models. Hidden Markov Support Vector Ma-
chine (HM-SVM) was proposed in [15], which com-
bines SVM with HMM to improve the discrimina-
tion power of the learned model. These methods are
“supervised” in nature, and thus the labeling of the
state sequence is required for the training data, which
limits their practical use. In [16], another discrimina-
tive learning method for HMM was proposed, which
only requires the labels of the training sequences.
The method initializes the HMMs with maximum-
likelihood method and then updates the models with
SVM. One drawback is that, the updated models do
not always lead to valid HMMs, which could be
problematic for a physics-driven problem where the
model states have real meanings (like the gesture
elements in [6]). Our proposed method requires nei-
ther the labeling of the states nor the class label for
the training sequences, which are difficult to obtain
or even not accessible in many applications. Instead,
only a relative ranking of the training data is used,
and the resultant model is a valid HMM.

1. The code is available at www.public.asu.edu/∼bli24/
CodeSoftwareDatasets.html
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Learning with relative information: Several meth-
ods for learning with relative information have been
proposed recently. In [10], a distance metric is learned
from relative comparisons. Considering the limited
training examples for object recognition, [17] proposes
an approach based on comparative objective similar-
ities, where the learned model scores high for objects
of similar categories and low for objects of dissimilar
categories. In [11], comparative facial attributes were
learned for face verification. The method of [9] learns
relative attributes for image classification and the
problem is formulated as a variation of SVM. Similar
idea was also been used in [12] for the purpose of
human-machine interaction. In [18], relative attribute
feedback, e.g., “Shoe images like these, but sportier”,
is used to improve the performance of image search.
Relative information between scene categories has
also been used to enhance the performances of scene
categorization in [19]. These approaches are mostly for
image-based attributes, whereas our current task is on
modeling sequential data, for which it is natural to
assume that the most relevant attributes (e.g., motion
skills) are embedded in a temporal structure. This is
what our proposed method attempts to address. Ef-
forts has been observed for estimating the true contin-
uous label of the data from a set of pairwise ranking
of training data [20] [21]. However, those methods do
not directly learn a model for ranking/labeling new
data.

Skill evaluation for surgical simulations: Objec-
tive evaluation of surgical skills has been a topic
of research for many years. [22] [23] used the time
of each data, total path traveled and the number of
hand movements to rate the surgical skills. It is evi-
dent that some of the criteria recommended in these
studies (e.g., time of completion) may be relatively
easily measured with proper sensory data, while some
others cannot be (e.g., respect for tissues). A tech-
nique proposed in [24] called task deconstruction was
implemented in a recent system by [25]. They used
Markov Models to model a sequence of force patterns
or positions of the tools. They showed that their
Markov Models were suitable for decomposing a task
(such as suturing) into basic gestures, and then the
proficiency of the complex gesture could be analyzed.
While this study offered an intriguing approach to
expertise analysis, it required an expert surgeon to
provide specifications for building the topology of the
model; hence it cannot be easily generalized to new
procedures. A similar idea was also utilized in [26].
[27] proposed to segment the training data into mod-
ular sub-procedures or therbligs and performance is
measured over each sub-procedure.

3 BASIC NOTATIONS OF HMM
In this section, we briefly describe HMM and intro-
duce some basic notations that will be used later. An

HMM can be defined by a set of parameters: the initial
transition probabilities π ∈ R

K×1, the state transition
probabilities A ∈ R

K×K and the observation model
{φk}

K
k=1, where K is the number of states. There are

two central problems in HMM: 1) learning a model
from the given training data; and 2) evaluating the
probability of a sequence under a given model, i.e.,
the decoding problem.

In the learning problem, one learns the model (θ)
by maximizing the likelihood of the training data (X):

θ∗ : max
θ

∏
Xi∈X

p(Xi|θ) ∼ max
θ

∑
Xi∈X

log p(Xi|θ) (1)

where X is the set of i.i.d. training sequences.
One efficient solution to the above problem is

the well-known Baum-Welch algorithm [28]. Another
scheme, namely the segmental K-means algorithm
[29], may also be used to seek a solution, and it
has been shown that the likelihoods under models
estimated by either of the two algorithms are very
close [29]. When the training data include sequences
of multiple categories, multiple models would be
learned and each model will be learned from data of
each category independently.

In the decoding problem, given a hidden Markov
model, one needs to determine the probability of
a given sequence X being generated by the model.
Generally we are more interested in the probability
associated with the optimal state sequence (z∗), i.e.,
p(X, z∗|θ) = maxz p(X, z|θ). The optimal state path
can be found via the Viterbi algorithm. To use HMM
in classification, we first compute the probability of
the given sequence drawn from each model, then we
choose the model yielding the maximal probability.

4 PROPOSED METHOD
Based on the previous discussion, we are concerned
with a new problem of learning temporal models
using only relative information. This is a problem
arising naturally in many applications involving mo-
tion or video data. In the case of video-based surgical
training, the focus is on learning to rate/compare
the performance of the trainees from recorded videos
capturing their motion. To this end, in recognition
of some fruitful trials of HMMs in this application
domain, we propose to formulate the task as one of
learning a Relative Hidden Markov Model, which not
only maximizes the likelihood of the training data, but
also maintains the given relative rankings of the input
pairs. In its most basic form, the proposed model
can be formally expressed as (following the notations
defined in Eqn. (1))

θ : max
θ

∏
Xi∈X

p(Xi|θ) (2)

s.t. F (Xi, θ) > F (Xj , θ), ∀(i, j) ∈ E
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where F (X, θ) is a score function for data X given by
model θ, which is introduced to maintain the relative
ranking of the pair Xi and Xj and E is the set of given
pairs with prior ranking constraint. Different score
functions may be defined, e.g., data likelihood and
data likelihood ratio, as described in the following
subsections in Sec. 4.1 and Sec.4.2.

From this formulation, the difference between the
proposed method and any of the existing HMM-
based methods is obvious. In an existing HMM-based
method, a set of models is trained using the training
data of each category independently. That is, explicit
class labels are required for each training sequence.
The proposed model has the following unique fea-
tures:

• The model does not require explicit class labels.
What needed is only a relative ranking.

• The model explicitly considers the ranking
constraint between given data pairs, whereas
independently-trained HMMs in existing meth-
ods cannot guarantee it.

• Only one model is learned for the entire set
of data. There are two benefits: more data for
training and less computation during testing.

Our method is also different from the existing work
on learning with relative attributes in that it models
sequential data and the relative ranking information
is capsulated in a temporal dynamic model of HMM
(albeit new algorithms are thus called for), which
has demonstrated performance in modeling physical
phenomena like human movements.

In the following subsections, we present two in-
stantiations of the general model expressed in Eqn.
(2), and develop the corresponding algorithms in each
case. It will become clear that the first model (Sec. 4.1),
while being intuitive, has some practical difficulties,
which motivated us to develop the improved model of
Sec. 4.2. Both models/algorithms are presented (and
evaluated later in Sec. 5) for the progressive nature of
the methods and for facilitating the understanding of
the improved model and algorithm of Sec. 4.2, which
is the recommended solution.

4.1 The Baseline Model
While one may use different score functions for F

in Eqn. (2) for comparing the input pairs, upon
successful training the likelihoods of the sequences
should reflect the original ranking. Hence we may set
F (Xi, θ) = p(Xi|θ). With this, the formulation in Eqn.
(2) can be rewritten as

θ : max
θ

∏
Xi∈X

p(Xi|θ) (3)

s.t. p(Xi|θ) > p(Xj |θ), ∀(i, j) ∈ E

It has been proven in [30] that, the marginal likeli-
hood is dominated by the likelihood with the optimal

path and their difference decreases exponentially with
the length (number of frames) of a sequence. This idea
was used in segmental K-means algorithm and simi-
larly we can approximate the marginal data likelihood
p(X|θ) by the likelihood with optimal path p(X, z∗|θ)
(when there is no ambiguity, we will use z for z∗),
which can be written as:

log p(X, z|θ) = log p(X1|φz1
) + log π(z1) (4)

+

T∑
t=2

[log p(Xt|φzt) + logA(zt|zt−1)]

For some observation models, e.g., multinomial
(more details in Appendix A), we can write
log p(Xi, zi|θ) = θTh(Xi, zi). Accordingly, Eqn. 3 can
be finally written as

θ : max
θ∈Ω

θT
∑

i:Xi∈X

h(Xi, zi) (5)

s.t. θTh(Xi, zi) ≥ θTh(Xj , zj) + ρ, ∀(i, j) ∈ E

where ρ ≥ 0 defines the required margin between
the logarithms of likelihood for a pair of data and
Ω defines the set of valid parameters for the hidden
Markov model, i.e.:

θ(i) ≤ 0 ;
∑

i:θ(i)∈log(π)

eθ(i) = 1 (6)

∑
i:θ(i)∈log(Aj)

eθ(i) = 1 ;
∑

i:θ(i)∈log(φj)

eθ(i) = 1

where i : θ(i) ∈ log(Aj) is the set of the indexes which
corresponds to the jth row of matrix A.

For the model in Eqn. 3, we assumed that every
pair-wise ranking constraint provided in the data is
correct (or valid). However, in real data, there may
be outliers in such training pairs. To handle this, we
further introduce some slack variables ε and η, and
accordingly Eqn. 5 can be written as following:

θ : max
θ∈Ω

θT
∑

Xi∈X

h(Xi, zi)− γ
∑

(i,j)∈E

εij

s.t. θT [h(Xi, zi)− h(Xj , zj)] + εij ≥ ρ, ∀(i, j) ∈ E

εij ≥ 0 (7)

where γ is the weight for the penalty term
∑

(i,j)∈E
εij .

For initialization, we can set εij = 0. We will defer the
optimization algorithm for Eqn. 7 to Sec. 4.3. After the
model is learned, it can be used to a testing pair: For
each sequence we evaluate the data likelihood via the
Viterbi algorithm and use the logarithm of the data
likelihood as the score of the data. By definition, the
obtained scores can be used to compare the pair.

4.2 The Improved Model
In the model described in Eqn. 7, we compare the
logarithm of the data likelihood, which is, according
to Eqn. 4, roughly proportional to the length of the
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data. Thus a shorter sequence is likely to have a larger
score. This means that the learned model would be
biased towards shorter sequences. If the observation
describes a long, periodic event, e.g., repeating an
action multiple times within a sequence, we may con-
sider normalizing the logarithm of the data likelihood
by the number of frames of the observation. How-
ever, this cannot be applied directly for non-periodic
observations like sequences from surgical simulation,
where the length of a sequence (corresponding to the
time taken for completing a task) is one of the skill
metrics.

To overcome the above practical problem, we con-
sider an improved version. Recall that in HMM, we
classify a sequence based on the model with which
the sequence gets the maximal likelihood, i.e., it is
the ratio of data likelihood with different models
that decides the label of the data. For example, if
log p(X,ẑ|θ1)

p(X,z̃|θ2)
> 0, then we assign X to Model θ1. Thus

we propose to use the ratio of the data likelihoods
of two HMMs as the score function, i.e., F (X, θ) =

log p(X,ẑ|θ1)
p(X,z̃|θ2)

, where we “partition” the original model
into two models (or, effectively, we train a pair of
HMMs simultaneously). This results in the following
improved model:

θ1, θ2 : max
θ1,θ2

∑
i∈Ξ1

log p(Xi, ẑi|θ1) +
∑
j∈Ξ2

log p(Xj , z̃j |θ2)

−γ
∑

(i,j)∈E

εij (8)

s.t. log
p(Xi, ẑi|θ1)

p(Xj , z̃j |θ2)
− log

p(Xj , ẑj |θ1)

p(Xj , z̃j |θ2)
+ εij ≥ ρ

εij ≥ 0

where Ξ1 is the set of data associated with Model θ1
(Ξ2 for Model θ2), ẑi is the optimal path for sequence
xi with Model θ1 and z̃i for optimal path with Model
θ2.

With log p(Xi,ẑi|θ1)
p(Xj ,z̃j |θ2)

= θT1 h(X
i, ẑi) − θT2 h(X

i, z̃i), we
can rewrite the model in Eqn. 9 (similar to Eqn. 7):

θ : max
θ∈Ω

θT

[ ∑
i∈Ξ1

h(Xi, ẑi)∑
j∈Ξ2

h(Xj , z̃j)

]
− γ

∑
(i,j)∈E

εij

s.t. θT
[

h(Xi, ẑi)− h(Xj , ẑj)

h(Xj , z̃j)− h(Xi, z̃i)

]
+ εij ≥ ρ (9)

εij ≥ 0

where θ = [θT1 , θ
T
2 ]

T . The optimization algorithm for
Eqn. 9 will be presented in Sec. 4.3. After we learn the
model with the improved algorithm, we can apply it
to a given pair by first computing their likelihoods
with respect to the ”sub-models” given by θ1 and
θ2 (with the Viterbi algorithm), and then we use the
logarithm of the ratio of the data likelihoods as the
score to rank/compare the pair.

The learned models θ1 and θ2 serve as a unified
model to rank the data. We may view them as the

centers of two clusters, where the distances of the
data to those two centers can be related to the ranking
score.

It needs to be emphasized that the improved model
is not equivalent to a supervised HMM with two
classes. In a 2-class HMM setting, two models will
be independently trained with their respective train-
ing sets. Here, the proposed model trains two ”sub-
models” jointly with only relative ranking constraints.
Specifically, if there is no further information for Ξ,
we could assume that Ξ1 = {i|(i, j) ∈ E, ∀j} and
Ξ2 = {j|(i, j) ∈ E, ∀i}, and thus there could be
overlaps between Ξ1 and Ξ2 (which will become clear
in the experiment with synthetic data in Sec. 5). This
situation is not even allowed by a supervised HMM
setting. We do not require any extra properties for Ξ1

and Ξ2.

4.3 Algorithms for Updating the Model
One important step of both the baseline algorithm
and the improved algorithm is updating the models,
as formulated in Eqn. 7 and Eqn. 9 accordingly. It
is a nonlinear programming problem (due to the
nonlinear equality constraint). In our previous pa-
per, we solved it by the primal-dual interior point
method, which is of dimension K(1 + K + D) + |E|
(or 2K(1 + K + D) + |E|) with 2|E| + K(1 + K + D)
(or 2|E|+2K(1+K+D)) linear inequality constraints
and 1 + K + D (or 2(1 + K + D)) nonlinear equality
constraints for the baseline model (or the improved
model). Although the Hessian matrix is diagonal, the
computational cost could be still very high when there
are a large number of training pairs. In this section,
we propose a new algorithm by utilizing the special
structure of the problems in Eqn. 7 and Eqn. 9.

Eqn. 7 (similarly for Eqn. 9) can be written in the
following form:

θ, ε : min
θ,ε

fT θ + γ1T ε (10)

s.t. : Aθ + ε ≤ ρ

Ceθ = 1

θ ≤ 0; ε ≥ 0

For example, for Eqn. 7, we have f =
−
∑

Xi∈X
h(Xi, zi), A and C are constructed according

to Eqns. 7 and 6.
Eqn. 10 is a nonlinear programming problem (due

to the nonlinear equality constraint). To solve this
problem, we first introduce a slack variables φ, where
logφ = θ. Then Eqn. 10 can be rewritten into the
following problem:

θ, ε, φ : min
θ,ε,φ

fT θ + γ1T ε (11)

s.t. : Aθ + ε ≤ ρ

Cφ = 1

logφ = θ

θ ≤ 0; ε ≥ 0; 0 ≤ φ ≤ 1
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According to Eqn, 11, φ will be a valid hidden Markov
model (or hidden Markov model pairs [φ1, φ2] for
the improved model). We then apply the Augmented
Lagrange multiplier method to the equality constraint
logφ = u of the problem in Eqn. 11:

θ, ε, φ : min
θ,ε,φ

fT θ + γ1T ε+ (12)

< λ, θ − logφ > +
μ

2
‖θ − logφ‖22

s.t. : Aθ + ε ≤ ρ

Cφ = 1

θ ≤ 0; ε ≥ 0; 0 ≤ φ ≤ 1

where λ is the Lagrange multiplier and μ is some non-
negative constant. In Eqn. 12, the nonlinear equality
constraint is removed.

Eqn. 12 can be solved via block coordinate descent
by iterating between the following two sub-problems:
Sub-problem 1: fix φ to solve θ and ε, which is

θ, ε : min
θ,ε,φ

fT θ + γ1T ε+ (13)

< λ, θ − logφ > +
μ

2
‖θ − logφ‖22

s.t. : Aθ + ε ≤ ρ

θ ≤ 0; ε ≥ 0

It is a quadratic programming problem with linear
inequality constraints.
Sub-problem 2: fix θ and ε to solve φ, which is

φ : min
φ

< λ, θ − logφ > +
μ

2
‖θ − logφ‖22 (14)

Cφ = 1

0 ≤ φ ≤ 1

It is a nonlinear problem with linear constraints.
Given the special structures of C, where each col-

umn has one and only one element being nonzero
(recall Eqn. 6), Sub-problem 2 can be separated into a
set of smaller problems:

φk : min
φk

< λk, θk − logφk > +
μ

2
‖θk − logφk‖22

1Tφk = 1 (15)
0 ≤ φk ≤ 1

where k is the set of indexes of columns, whose
values are nonzero at the kth row of C. Those smaller
problems are again a nonlinear problem with linear
constraint, whose dimensions are only K (number of
states) or D (number of feature dimensions).

To solve this problem we can use the primal-dual
interior point method, whose gradient and hessian are
computed as

J =
−λk + μk logφk − μkθk

φk

H = Λ(
λk − μ logφk + μθk + μ

φk · φk
)

where Λ(· · · ) converts a vector to a diagonal matrix.
In addition, we can compute the starting point of
the problem in Eqn. 15 as: by taking the gradient of
the objective function with regard to logφk, we have

−λk + μ(logφk − θk) = 0, i.e., φk = e(θ
k+λk

μ
). The

linear constraint can be solved simply by projection,

i.e., φk = 1
N
e(θ

k+λk

μ
), where N =

∑
e(θ

k+λk

μ
).

Finally, we briefly summarize the algorithms for
the baseline model (Eqn. 7) and the improved model
(Eqn. 9) below (noting the similarity in form of
the algorithms and thus putting them compactly
together):

Algorithm for the Baseline (Improved) Model
Input: X, E, ρ, γ, σ (, Ξ1 and Ξ2)
Output: φ
Initialization: Initialize φ (or φ1 and φ2) via or-
dinary HMM learning algorithm, λ = log θ

|θ|2
and

μ = 1.25
|θ|2

;
while not converged do

Compute the optimal path z (or ẑ and z̃) for each
sequence with φ (or φ1 and φ2);
solve Sub-problem 1;
solve Sub-problem 2;
update λ = λ+ μ(θ − logφ) and μ = μ× σ;
check convergence;

end while

According to [31], the proposed method will converge
to the local minimum of the problem in Eqn. 10. And
for convergence, we check ‖θ−logφ‖2

‖θ‖2

. If it is smaller
than some value, e.g., 10−6, the algorithm will be
terminated. In initialization, |θ|2 is the vector L2 norm
of of θ.

Remarks on the Parameters: The parameter γ con-
trols the weight of the penalty term with the slack
variables, which is similar to the functionality of C

in support vector machines [32]. The parameter ρ

controls the desired gap of the score of two data
points, i.e., p(Xi,zi|θ)

p(Xj ,zj |θ) ≥ eρ ∀(i, j) ∈ E in the baseline

model and p(Xi,ẑi|θ1)
p(Xi,z̃i|θ2)

p(Xi,z̃j |θ2)
p(Xi,ẑj |θ) ≥ eρ ∀(i, j) ∈ E in

the improved model. In Sec. 5.1, we will evaluate
different parameter settings (Fig. 2), which leads us
to set γ = 1000 and ρ = 10 in our final experiments.
The parameter σ controls the convergence speed of the
algorithm, which should be a positive number larger
than 1. σ is typically within 1.1−1.5, and 1.25 is used
in this paper.

The proposed algorithm, compared with the one
used in [13], has lower computational cost, due to
the removal of the nonlinear equality constraint with
augmented Lagrange multiplier. For Sub-problem 1,
the quadratic term is a diagonal matrix and many
solvers (e.g., CPLEX) can solve it quite efficiently.
Sub-problem 2 is a nonlinear minimization problem
with linear equality constraints; however, it can be
decomposed into several smaller problems.
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Method in [13] Proposed Method
Sub-problem 1 Sub-problem 2

Problem Size K(1 +K +D) + |E| K(1 +K +D) + |E| K(or D)
# Linear Const. 2|E|+K(1 +K +D) 2|E|+K(1 +K +D) 1+2K(or 1+2D)

# Nonlinear Const. 1 +K +D 0 0

TABLE 1
Comparing the method in [13] and the proposed method for updating the baseline model, with regarding to the

problem size, number of linear constraints and nonlinear constraints. For Sub-problem 2 of the proposed
method, it can be divided into several smaller problems.

A comparison between the method in [13] and the
proposed method for updating the baseline model is
shown in Tab. 1. In Sec. 5.1, we will also compare
the computational time of those two methods under
varying E on synthetica data (Fig. 6).

4.4 Relationship to Existing Methods
The proposed method is related to latent support
vector machine [33]. Given a training set of input-
output pairs {(xi, yi)}

n
i=1, where yi ∈ {−1, 1}, Latent

SVM tries to learn a predictor of the form:

fw(x) = max
z

wTΨ(x, z) (16)

where w is the parameter of the predictor, Ψ(x, z)
is the feature mapping function and z is the latent
variable. The training stage of Latent SVM can be
formulated as the following problem:

min
w

1

2
‖w‖22 + C

∑
i

max (0, 1− yifw(xi)) (17)

Latent SVM is a non-convex problem, as the latent
variable is unknown, and the coordinate descent ap-
proach is used for solving this problem.

Given a training set {(xi, yi)}
n
i=1, where xi =

(xL
i , xR

i ) is a pair of sequences and yi ∈ {−1, 1} is the
ranking of the pair, by defining the feature mapping
function as Ψ(xi, zi) = [h(xL

i , zLi ) − h(xR
i , zR

i )], with
the latent variable zi = (zL

i , zRi ) being a pair of state
sequences for the pair xi = (xL

i , xR
i ), we have

min
w

1

2
‖w‖22 + C

∑
i

εi (18)

s.t. yi max
zL
i
,zR

i

{
wT [h(xLi , zLi )− h(xR

i , zRi )]
}
+ εi ≥ 1

εi ≥ 0

We can find that Eqn. 18 is similar to our baseline
model (Eqn. 7), except for the following differences.

1) In Eqn. 18, the L2 norm is applied to the param-
eter of the predictor w (which is related to the
margin). In the proposed methods we require w

to be a valid hidden Markov model while defin-
ing a fixed-margin, i.e., ρ. Thus the proposed
method can always guarantee the learned model
is a valid hidden Markov model.

2) In Eqn. 18, the two state sequences z (i.e., the
latent variables) are optimized jointly, where

no known efficient solution is available. In the
proposed method, the two state sequences are
optimized separately with regarding to the like-
lihood, which can be solved efficiently via dy-
namic programming (i.e., the Viterbi algorithm);

3) Given the model learned by the latent SVM, we
can only rank a pair of sequences. However,
the model learned by the proposed method is
capable of not only ranking a pair of sequences
but also assigning a score for each sequence.

Those differences make the proposed method (both
the baseline model and the improved model) more
suitable for modeling the sequential data, e.g., video,
speech.

5 EXPERIMENTS
In this section, we evaluate the proposed methods,
including the baseline method and the improved
method, using both synthetic data (Sec. 5.1) and real-
istic data collected from the surgical training platform
FLS box (Sec. 5.2). The performance of the proposed
methods is compared with a supervised 2-class HMM.
(Lacking a comparative approach in the literature that
is both unsupervised and works with only relative
rankings, this is believed to be a reasonable way of
generating a reference point to assess the proposed
methods.)

Since we do not have the label information for
the training data, we train the HMM as follows. For
the HMM algorithm, we initialize the two sets as
Ξ1 = {i|(i, j) ∈ E, ∀j} and Ξ2 = {j|(i, j) ∈ E, ∀i}. Each
of the sets is then used to train a HMM. Note, the
data generated from data-generating Models θ2 ∼ θ5
could be included in both Ξ1 and Ξ2. Thus existing
discriminative learning methods for HMM could not
be applied here.

5.1 Evaluation with Synthetic Data
To evaluate the proposed method, we generate syn-
thetic data as follows. We first generate six different
HMMs (θ1 to θ6, referred as data-generating models),
from each of which we draw 200 sequences, with
the length being uniformly distributed between 80 to
120. Each data-generating model has five states. For
the sequences from each data-generating model, we
randomly assign 50 of them to the training set and the
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remaining to the testing set. We assume there exists
a score function such that F (Xi) > F (Xj) if and only
if Xi ∼ θk, Xj ∼ θl and k < l. That is, the sequences
from a data-generating model with a lower index are
viewed to have a higher score (or ranking) than those
from a data-generating model with a higher index. A
set of pairs {(i, j)|Xi ∼ θk,Xj ∼ θk+1, k = 1, · · · , 5}
are then formed accordingly, some of which are then
randomly selected as the training pairs E.

We use the proposed methods and also HMM to
learn models from the training pairs. The learned
models are then used to evaluate the testing set, i.e.,
how many testing pairs that they rank the same as
the ground truth. The result of the methods with
different numbers of training pairs is summarized
in Fig. 3, where due to the computational time it
takes, we do not have the results for the baseline
method when there are more than 3750 training pairs.
From Fig. 3, we can find that the improved method
achieves the best results on both the training set and
the testing set; and the HMM method gives the worse
result. In addition, the performance of both of the
proposed methods stabilized after certain number of
training pairs. However the performance of the HMM
method drops dramatically when the number of train-
ing pairs reaches about 6250. It can be explained by
that the two HMMs share a lot of common data
(for those generated by θ2 ∼ θ5) and the models
are trained independently without considering their
discrimination ability. Normalizing the logarithm of
the data likelihood does not improve the performance
of baseline method, which could be explained by that,
all the sequences have roughly the same length, i.e.,
80 ∼ 120.

Fig. 4 shows the logarithm of the data likelihood ra-
tio with the models learned by the improved method,
when about 1250 training pairs are provided. This
clearly demonstrates that, although we formed the
training pairs only with data from data-generating
models of adjacent indexes (i.e., i and i + 1), the
learned model is able to recover the strict ranking
of the original data. We can also try to classify the
data into six models, by thresholding the logarithm
of data likelihood ratio, where, for the model learned
with the improved method, the classification accuracy
is 86.44% and 98.60% for testing and training respec-
tively.

Convergence and Speed For empirically under-
standing the convergence behavior of the improved
method, we plot in Fig. 5 the objective value in the
model as a function of the number of iterations. We
can find that the improved method converges fairly
quickly (within about 14 iterations) and the value of
the objective function monotonically increases.

We also compare the computational time of the
optimization method in [13] (shown as the red/upper
curve) and the proposed optimization method (in
Sec. 4.3 and shown as the green/lower curve) in

solving the improved model under varying number of
training pairs in Fig. 6. In [13], a primal-dual interior
point method is utilized to update the model; while
in this paper, we design an augmented Lagrange
multiplier method which utilizes the special structure
of the objective function of the problem. From the plot,
we can find that the proposed optimization method
has a much lower computational cost than the one
proposed in [13].

Parameter Selection: to understand the effect of
parameters to the performances of the improved
method, including accuracy and computation cost, we
evaluate it with varying combination of parameters.
First we learn the model with varying numbers of
states (K), from 6 to 30. The result is shown Fig. 1.
From Fig. 1(b), we can find that, though the accuracy
for the training data increases with the number of
states, the accuracy for testing doesn’t following this
trend, which indicates a potential risk of over-fitting.
The computational time and number of iteration un-
til convergence get minimum when the number of
states is 11 − 13. We also do experiment with differ-
ent combinations of γ (controlling the weight of the
penalty term with slack variables) and ρ (controlling
the margin of the model), where the experiment result
is shown in Fig. 2. From this experiment we can find
that, γ ∈ [1, 1000] and ρ ∈ [4, 32] are good choices.

It is obvious from this experiment that the se-
quences are different from (or similar to) each other
only because they are from different (or the same)
data-generating models, whereas their relative rank-
ing can be arbitrarily defined. In the end, the proposed
methods will learn a temporal model to reflect the
defined rankings. This suggests that, as long as we
can assume there are some data-generating models
for the given sequential data, we can use the proposed
methods to learn a relative HMM. This is the basis for
applying the approach to the surgical training data
in the following sub-section, where it is reasonable
to assume that movement patterns of subjects with
different skill levels may be modeled by different
underlying HMMs while the ranking can be based
on the time of training, which reflects the skill level
of the subject at the time.

5.2 Skill Evaluation Using Surgical Training Video
We now evaluate the proposed method using real
videos captured from the FLS trainer box, which has
been widely used in surgical training. The data set
contains 546 videos captured from 18 subjects per-
forming the “peg transfer” operation, which is one of
the standard training tasks a resident surgeon needs
to perform and pass. The number of frames in each
video varies from 1000 to 6000 (depending on the
trainees’ speed in completing a training session). The
data set covers a training period of four weeks, with
every trainee performing three sessions each week.
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Fig. 1. The experiment result with different numbers
of states: (a) the computational time (blue solid curve)
and number of iterations needed for convergence
(green dashed curve); (b) the accuracy of the improved
method. The X-axis is the number of states.

In the training, the subject needs to lift six objects
(one by one) with a grasper by the non-dominant
hand, transfer the object midair to the dominant hand,
and then place the object on a peg on the other side
of the board. Once all six objects are transferred,
the process is reversed, and the objects are to be
transferred back to the original side of the board. The
videos capture the entire process inside the trainer
box, showing how the tools and objects are moved
by the subject. The motion skill is related to how well
the subjects perform in such operation. In the existing
practice, senior surgeons rate the performance of the
trainees based on such videos. Our goal is to perform
the rating automatically with the proposed model.

Based on the reasonable assumption that the
trainees improve their skills over time (which is the
whole point of having the resident surgeons going
through the training before taking the exam), the
time of recording is used to rank the recorded videos
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Fig. 2. The accuracy of the improved method: (a) with
different γ (ρ is xed to 10), which controls the weight of
the penalty term with slack variables; (b) with different
ρ (γ is xed to 1000), which controls the margin of the
learned models.

within each subjects’ corpus (i.e., a later video is
associated with a better skill). Other than this relative
ranking, there are no other labels assumed for the
video, e.g., there is no rank information between
videos of different subjects (which would be hard
to obtain anyway, since there is no clearly-defined
skill levels for a group of trainees with diverse back-
ground). Based on this, we randomly pick 300 pairs
for training, similar to the experiment using synthetic
data.

Feature Extraction: we use the “bag of words”
approach for feature extraction from the videos as
follows. The spatiotemporal interest point detector
[34] is applied to obtain the histogram-of-gradient
(HoG) features, which was found to be useful in target
application in the literature [35]. K-means (k = 100) is
then used to build a code book for the descriptors of
the interest points. Finally, the code book is used to
obtain a histogram of interest points for each frame,
and thus each video is represented as a sequence
of histograms. This representation, compared with
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generation model from which they are synthesized.

the existing way of using bag of words in action
recognition, i.e., transforming each video into a single
histogram, can better capture the temporal informa-
tion of the data. For all three methods, we set the
number of states to ten.

After learning the models from the training data, we
compute the score of the test data as the logarithm of
data likelihood (for the baseline method) or the log-
arithm of the data likelihood ratio (for the improved
method and the HMM). We compare these scores for
each pair of the testing data (within each subject)
and compute the percentage of correctly labeled pairs
(recall that, we use their time of recording as ground
truth). To demonstrate the advantage of the proposed
method, we also compare with the “relative attribute”
method [9] (referred as “SVM” in the following dis-
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Fig. 6. The computation time for solving the im-
proved model with the method proposed in [13]
(red/upper curve) and the method proposed in Sec. 4.3
(green/lower) under varying number of training pairs.
For illustration purpose, we use log-log plot, where X-
axis is the number of training pairs (from around 125
to around 9000) and Y-axis is the computation time in
unit second (from about 20 to around 6000). The time
is measured in Matlab on a dual-core PC platform.

cussions), which relies on ranking SVM. For “relative
attribute”, we represent each video as a histogram by
accumulating the sequence of histograms of the video
along the temporal direction.

The result is summarized in Tab. 2, where the
improved method obtained a significantly better re-
sult than the other approaches, including “relative
attribute”. Surprisingly, the baseline method even per-
formed slightly worse than the HMM method. This
is largely due to the wide range of variations of
the length of the input sequences. Fig. 7 shows the
computed scores with the learned models, where for
better illustration purpose we group them by their
subject ID and within each subject’s corpus we sort
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Method SVM HMM Baseline Improved
# Pairs 6335 6363 6215 6993

Accuracy 78.91% 79.39% 77.54% 87.25%

TABLE 2
The result for experiment on evaluating surgical skills.

There are 8015 pairs in total (only 300 for training),
excluding the comparisons among data of different

subjects.

the videos by their recording time. From the figure, we
can find that the improved method (bottom) reveals
a more clear trend for the data than both the HMM
method (top) and the baseline method (middle), i.e.,
the scores of the data increase over times (X-axis)
for each subject (segments within the red lines). It
is worth emphasizing that only one joint model is
learned from ranked pairs of subjects with potentially
varying skill levels. Still the learned model is able
to recover the improving trend, independent of the
underlying skill levels.

As shown in Fig. 7, the model learned with the
proposed method can be used for comparing not only
the videos of the same subjects but also the videos
from different subjects, where the logarithm of data
likelihood ratio can be used as a measurement of
the skills. However, it is not possible to quantita-
tively measure the accuracy in comparing videos from
different subjects, due to the lack of ground truth
information for videos from different subjects.

It is also interesting to look at what the jointly-
learned models look like. Fig. 8 depicts the two mod-
els learned by the improved method in this real-data
based experiment. From the figure, we can see that
the two models have different transition patterns. For
example, the transition from State 8 to States 2 and 5
are only observed in Model 1. This may be linked to
different motion patterns for data of different surgical
skills, with the hidden states corresponding to some
underlying action elements (and thus the transition
patterns vary with the skill).

6 ADDITIONAL VALIDATION USING SPEECH
DATA
Although the proposed approach was evaluated
above in the context of motion skill analysis in sur-
gical training, using visual data as the input, the
approach itself is general and applicable for other
applications involving temporal data. To show that
the proposed method can be used to solve tempo-
ral inference problems other than video-based mo-
tion skill assessment, we now consider an exemplar
problem, speech-based emotion recognition, where
the attribute of interest (the underlying emotion of
a speaker) needs to be inferred from sequential data.
Emotion recognition has received attention from re-
searchers due to its broad applications. For example,

in human-machine interaction, better responses can
be made if the emotional state of the human can be
recognized. Existing work on this in the literature
mainly focuses on developing models for assigning
the labels like “pleasing”, “angry” and “neural” to
the data, e.g., [36], [37], [38], [39]. Most of the those
efforts are supervised in natural, i.e., the ground truth
labeling for the training data is required. For example,
[40] used support vector machines, [36] used hidden
Markov models, both utilizing fully-labelled data. The
ground truth data typically require manual labeling
by human, which is an error-prone process especially
if absolute labels must be assigned to ambiguous data.
With the proposed model, we can support learning
with only relative labels like “Audio a is more pleas-
ing than Audio b”, which is easier to obtain and also
less error-prone.

In this experiment, we use Utsunomiya University
Spoken Dialogue Database For Paralinguistic Infor-
mation Studies (UUDB) [41](http://uudb.speech-lab.
org), which contains 4840 assets labeled across six
dimensions (pleasantness, arousal, dominance, cred-
ibility, interest and positivity) on a scale of 1 to 7.
The ground truth is based on the average of scores
of three annotators. For our experiment, we pick the
assets which are longer than 1 second to ensure the
effectiveness of emotional recognition, which results
in 991 assets, where half of the data are used for
training and the remaining for testing. For generating
the ground truth pairs, we randomly picks 1000 pairs
from the training assets. Note that, we say two assets
are similar, if the difference of the labeled scores of
two assets is within the range of (−1, 1).

For feature extraction, we use Hidden Markov
Model Toolkit (HTK) [42], where the MFCC coeffi-
cients are extracted with the following configurations:
sampling rate is 100 HZ, windows size is 25 millisec-
ond, number of filter bank channels is 26, cepstral
liftering coefficient is 22 with 12 cepstral parameters
and the feature vector is normalized. K-means is
applied to the MFCC coefficients of all the training
data to generate a code book of 64 elements. Finally,
each data is converted to a sequences of histograms.
We use the same set of parameters as the previous
experiment.

The experimental results are reported in Tab. 3,
where we also provide a comparison to the relative
attribute [9] as referred by “SVM”. From the table,
we can find that the improved method consistently
outperforms than both plain HMM and also the
baseline method in all six dimensions. We also find
that the baseline method gets low accuracy on this
experiment, which can be explained by that the length
of the audio (in number of temporal frames) varies
dramatically and the baseline method obviously can-
not handle this variation very well.
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Dimension SVM Improved Baseline HMM
Pleasantness 75.25% 77.30% 57.96% 75.05%

Arousal 82.11% 86.95% 55.74% 69.55%
Dominance 74.13% 87.95% 63.04% 77.32%
Credibility 69.15% 76.68% 55.11% 71.74%

Interest 76.91% 81.90% 62.56% 78.07%
Positivity 68.08% 74.99% 67.84% 70.36%
Average 74.27% 81.28% 53.14% 73.72%

TABLE 3
The result for experiment on UUDB datasets. We

evaulate the accuracy of ranking pairs with the
learned models compared with the ground truth ones.

7 DISCUSSIONS AND CONCLUSIONS

In this paper, we presented a new formulation for
the problem of learning temporal models using only
relative information. Algorithms were developed un-
der the formulation, and experiments using both syn-
thetic and real data were performed to verify the
performance of the proposed method. In essence, the
proposed method attempts to learn an HMM with
relative constraints. Such a setting is useful for many
practical applications where relative attributes are
easier to obtain while explicit labeling is difficult to
get. The application of video-based surgical training

was the focus of this study, and the evaluation re-
sults using realistic data suggests that the proposed
method provides a promising solution to the problem
of motion skill evaluation from videos. For future
work, we plan to extend the proposed method to
cover different observation models so that more types
of applications may be handled. That also includes
investigating alternative feature spaces which may be
more effective for the target problem.
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APPENDIX A
For multinomial observation model, i.e., p(Xt|φzt) =∏D

d=1 φzt
(l)Xt(l), where D is the dimension of each

frame, Xt(l) is the lth dimension of Xt and φzt are
the parameters of observation model with State zt,
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attached to each edge indicates the transition probability.

we can further define the following variables for each
sequence Xi:

ni ∈ R
K×1 : ni(k) = δ(zi

1 = k)

Oi ∈ R
K×D : Oi(k, d) =

∑
t:zt=k

Xi
t(d)

Mi ∈ R
K×K : Mi(k, l) =

T∑
t=2

δ(zi
t−1 = k)δ(zi

t = l)

where δ(·) is Dirac Delta function. Then the log like-
lihood with the optimal path can be written as:

log p(Xi, zi|θ) =
∑
l

ni(l) log π(l)

+
∑
k,l

Mi(k, l) logA(k, l)

+
∑
k,d

Oi(k, d) logφk(d)

= θTh(Xi, zi) (19)

where θ = [log π;vec(logA);vec(logφ)], h(Xi, zi) =
[ni;vec(Mi);vec(Oi)] and vec converts matrix to vec-
tor.
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