D-stability and delay-independent stability of monotone nonlinear systems with max-separable Lyapunov functions | IEEE Conference Publication | IEEE Xplore

D-stability and delay-independent stability of monotone nonlinear systems with max-separable Lyapunov functions


Abstract:

Stability properties of monotone nonlinear systems with max-separable Lyapunov functions are considered in this paper, motivated by the following observations. First, rec...Show More

Abstract:

Stability properties of monotone nonlinear systems with max-separable Lyapunov functions are considered in this paper, motivated by the following observations. First, recent results have shown that such Lyapunov functions are guaranteed to exist for asymptotically stable monotone systems on compact sets. Second, it is well-known that, for monotone linear systems, asymptotic stability implies the stronger properties of D-stability and robustness with respect to time-delays. This paper shows that similar properties hold for monotone nonlinear systems that admit max-separable Lyapunov functions. In particular, a notion of D-stability for monotone nonlinear systems and delay-independent stability will be discussed. The theoretical results are illustrated by means of examples.
Date of Conference: 12-14 December 2016
Date Added to IEEE Xplore: 29 December 2016
ISBN Information:
Conference Location: Las Vegas, NV, USA

Contact IEEE to Subscribe

References

References is not available for this document.