Loading [a11y]/accessibility-menu.js
Cloud Task Scheduling Based on Load Balancing Ant Colony Optimization | IEEE Conference Publication | IEEE Xplore

Cloud Task Scheduling Based on Load Balancing Ant Colony Optimization


Abstract:

The cloud computing is the development of distributed computing, parallel computing and grid computing, or defined as the commercial implementation of these computer scie...Show More

Abstract:

The cloud computing is the development of distributed computing, parallel computing and grid computing, or defined as the commercial implementation of these computer science concepts. One of the fundamental issues in this environment is related to task scheduling. Cloud task scheduling is an NP-hard optimization problem, and many meta-heuristic algorithms have been proposed to solve it. A good task scheduler should adapt its scheduling strategy to the changing environment and the types of tasks. This paper proposes a cloud task scheduling policy based on Load Balancing Ant Colony Optimization (LBACO) algorithm. The main contribution of our work is to balance the entire system load while trying to minimizing the make span of a given tasks set. The new scheduling strategy was simulated using the CloudSim toolkit package. Experiments results showed the proposed LBACO algorithm outperformed FCFS (First Come First Serve) and the basic ACO (Ant Colony Optimization).
Date of Conference: 22-23 August 2011
Date Added to IEEE Xplore: 20 October 2011
Print ISBN:978-1-4577-0885-5

ISSN Information:

Conference Location: Liaoning

Contact IEEE to Subscribe

References

References is not available for this document.