Abstract:
This paper proposes a full-rate, full-diversity space-time block code (STBC) with low maximum likelihood (ML) decoding complexity and high coding gain for the 4 transmit ...Show MoreMetadata
Abstract:
This paper proposes a full-rate, full-diversity space-time block code (STBC) with low maximum likelihood (ML) decoding complexity and high coding gain for the 4 transmit antenna, 2 receive antenna (4 times 2) multiple-input multiple-output (MIMO) system that employs 4/16-QAM. For such a system, the best code known is the DjABBA code and recently, Biglieri, Hong and Viterbo have proposed another STBC (BHV code) for 4-QAM which has lower ML-decoding complexity than the DjABBA code but does not have full-diversity like the DjABBA code. The code proposed in this paper has the same ML-decoding complexity as the BHV code for any square M-QAM but has full- diversity for 4- and 16-QAM. Compared with the DjABBA code, the proposed code has lower ML-decoding complexity for square M-QAM constellation, higher coding gain for 4- and 16-QAM, and hence a better codeword error rate (CER) performance. Simulation results confirming this are presented.
Published in: 2009 IEEE International Conference on Communications
Date of Conference: 14-18 June 2009
Date Added to IEEE Xplore: 11 August 2009
CD:978-1-4244-3435-0