Abstract:
This paper proposes an efficient parallel memory system for algorithms applied in fixed and variable block-size motion estimation (VBSME). The proposed system is implemen...Show MoreMetadata
Abstract:
This paper proposes an efficient parallel memory system for algorithms applied in fixed and variable block-size motion estimation (VBSME). The proposed system is implemented by a novel combination of two parallel memory architectures. The distribution of data among the memory modules is modified over contemporary approaches and the optimized address computation unit enables a rapid address generation for accessed memory locations. Furthermore, the introduced data permutation scheme organizes data efficiently for storage and retrieval. The proposed system enables up to 4 X speedup in data storage and retrieves data up to 55% faster for VBSME compared with the reference implementations. With a 0.18- mum CMOS technology, the proposed memory addressing and data permutation scheme can be clocked at 980 MHz operating frequency with a cost of less than 6 kgates. On FPGA, the system can operate at 200 MHz with less than 700 logic elements. The results show that the proposed system is applicable to real-time VBSME at HDTV resolution.
Published in: IEEE Transactions on Circuits and Systems for Video Technology ( Volume: 18, Issue: 4, April 2008)